Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}u_2+u_3-u_6=7\\u_4+u_8=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d-u_1-5d=7\\u_1+3d+u_1+7d=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=3\\d=-2\end{matrix}\right.\)
`=> u_n = 3-2(n-1) = -2n+5`
Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ
\(logu_1+\sqrt{2+logu_1-2logu_{10}}=2logu_{10}\)
\(\Leftrightarrow logu_1-2logu_{10}+\sqrt{2+logu_1-2logu_{10}}=0\)
\(\Leftrightarrow t^2-2+t=0\)(\(t=\sqrt{2+logu_1-2logu_{10}}\ge0\))
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-2\end{cases}}\)
\(\Rightarrow2+logu_1-2logu_{10}=1\)
\(\Leftrightarrow2+logu_1-2log\left(2^9u_1\right)=1\)
\(\Leftrightarrow log\left(10u_1\right)=log\left(2^9u_1\right)^2\)
\(\Rightarrow10u_1=2^{18}u_1^2\)
\(\Leftrightarrow u_1=\frac{10}{2^{18}}\).
\(u_n=\frac{2^{n-1}.10}{2^{18}}>5^{100}\Leftrightarrow n>log_2\left(\frac{5^{100}.2^{19}}{10}\right)=-log_210+100log_25+19\)
Suy ra \(n\ge248\).
15.
ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)
\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)
\(\Leftrightarrow x^2+2x+1>2\)
\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)
16.
\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)
17.
\(z=2+2i-6i-6i^2=8-4i\)
\(\Rightarrow\overline{z}=8+4i\)
11.
\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)
12.
\(log\left(10a^3\right)=log10+loga^3=1+3loga\)
13.
\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)
\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)
14.
\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng
Dãy số đã cho có thể viết lại là :
\(u_n=\log_{2010}n;n=2,3,4.....\)
Do đó \(a=u_{11}+u_{12}+u_{13}+u_{14}+u_{24}\)
\(=\log_{2010}11+\log_{2010}12+\log_{2010}13+\log_{2010}14+\log_{2010}24\)
\(=\log_{2010}\left(11.12.13.14.24\right)\)
và \(b=u_{63}+u_{64}+u_{65}+u_{66}+u_{67}=\log_{2010}\left(63.64.65.66.67\right)\)
Từ đó suy ra :
\(M=b-a=\log_{2010}\left(63.64.65.66.67\right)-\log_{2010}\left(11.12.13.14.24\right)\)
\(=\log_{2010}\frac{63.64.65}{11.12.13}\)
\(=\log_{2010}\frac{2^7.3^3.5.7.11.13.67}{2^6.3^2.7.11.13}=\log_{2010}\left(2.3.5.67\right)=\log_{2010}2010=1\)