K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

hello quân Phú đây

NV
10 tháng 7 2021

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

23 tháng 7 2016

Nhận xét các số hạng trong dãy có dạng

\(\frac{n\left(n+1\right)}{2}\)

=>Tổng 2 số hạng liên tiếp của dãy là

\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương

=>đpcm

24 tháng 6 2017

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)

=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)

Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương

5 tháng 10 2017

Xét tổng 2 số hạng liên tiếp của dãy:

(n-1)n/2+n(n+1)/2=(n^2-n+n^2+n)/2=(2n^2)/2=n^2 là số chính phương(n thuộc N)

6 tháng 10 2017

bạn thử chọn số khác đi như \(\frac{n\left(n+2\right)}{2}\)nó đâu có ra