Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 ; 9 ; 4 ; 8; 6 ...
Ta thấy: Số thứ nhất với số thứ 3 hơn kém nhau 2 đơn vị, số thứ 3 với số thứ 5 cũng cách nhau 2 đơn vị.
Số thứ 2 và số thứ 4 được sắp xếp theo thứ tự giảm dần.
=> Suy ra đây là dãy được ghép bởi 2 dãy số khác.
Số cần điền tiếp là: 2 ; 9 ; 4 ; 8; 6 ; 7 ; 8 ; 6; 10.
Hok tốt
a. 128:(8*16*4 + 52):4 = 8/141
b.128 : 8 *16*(4+52 :4 ) =4352
A ) 128 : ( 8 x 16 x 4 + 52 ) : 4 = \(\frac{8}{141}\)
B ) 128 : 8 x 16 x ( 4 + 52 : 4 ) =4352
Nếu mình đúng thì các bạn k mình nhé
22-21=1,
43-22=21,
65-43=22;
.....
vậy 4 chữ số tiếp theo là:
21;22;43;65; 108;173;281;454
tk mk nhé các bn
Nhận xét : 43 = 21 + 22
65 = 43 + 22
Quy luật : Kể từ số thứ ba thì nó bằng tổng của 2 số trước
4 số tiếp theo :
65 + 43 = 108
108 + 65 = 173
...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1:
Giải:
- Ta nhận thấy: Số hạng thứ 1: 2 = 2 x 1
Số hạng thứ 2: 4 = 2 x 2
Số hạng thứ 3: 6 = 2 x 3
…………
Số hạng thứ n: ? = 2 x n
Quy luật của dãy số là: Mỗi số hạng bằng 2 nhân với số thứ tự của số hạng ấy.
- Ta nhận thấy các số hạng của dãy là số chẵn, mà số 2009 là số lẻ, nên số 2009 không phải là số hạng của dãy.
- Bài 2:
Giải:– Ta thấy: 8 – 5 = 3; 11 – 8 = 3; ………
Dãy số trên được viết theo quy luật sau: Kể từ số thứ 2 trở đi, mỗi số hạng bằng số hạng đứng liền trước nó cộng với 3.
Vậy 3 số hạng tiếp theo của dãy số là:
17 + 3 = 20 ; 20 + 3 = 23 ; 23 + 3 = 26
Dãy số được viết đầy đủ là: 2, 5, 8, 11, 14, 17, 20, 23, 26.
- Ta thấy: 2 : 3 = 0 dư 2 ; 5 : 3 = 1 dư 2 ; 8 : 3 = 2 dư 2 ; …..
Vậy đây là dãy số mà mỗi số hạng khi chia cho 3 đều dư 2. Mà:
2009 : 3 = 669 dư 2. Vậy số 2009 có thuộc dãy số trên vì cũng chia cho 3 thì dư 2.
Bài 3:
Giải:
- Cả 2 số 60, 483 đều không thuộc dãy đã cho vì:
– Các số hạng của dãy đã cho đều lớn hơn 60.
– Các số hạng của dãy đã cho đều chia hết cho 5, mà 483 không chia hết cho 5.
- Số 2002 không thuộc dãy đã cho vì mọi số hạng của dãy khi chia cho 3 đều dư 2, mà 2002 chia 3 thì dư 1.
- Cả 3 số 798, 1000, 9999 đều không thuộc dãy 3, 6, 12, 24,… vì:
– Các số hạng của dãy (kể từ số hạng thứ 2) đều chẵn, mà 9999 là số lẻ.
– Mỗi số hạng của dãy (kể từ số hạng thứ 2) đều gấp đôi số hạng liền trước nhận nó; cho nên các số hạng (kể từ số hạng thứ 3) có số hạng đứng liền trước là số chẵn, mà 798 chia cho 2 = 399 là số lẻ.
– Các số hạng của dãy đều chia hết cho 3, mà 1000 lại không chia hết cho 3.
Bài 4:
Giải:
– Ta nhận xét: 2,2 – 1 = 1,2; 3,4 – 2,2 = 1,2; 14,2 – 13 = 1,2;……
Quy luật của dãy số trên là: Từ số hạng thứ 2 trở đi, mỗi số hạng đều hơn số hạng liền trước nó là 1,2 đơn vị:
– Mặt khác, các số hạng trong dãy số trừ đi 1 đều chia hết cho 1,2.
Ví dụ: (13 – 1) chia hết cho 1,2
(3,4 – 1) chia hết cho 1,2
Mà: (34,6 – 1) : 1,2 = 28 dư 0.
Vậy nếu viết tiếp thì số 34,6 cũng thuộc dãy số trên.
Bài 1 : Cho dãy số : 2 ; 4 ; 6 ; 8 ; .....
1. Dãy số được viết theo quy luật : số chẵn cách đều bắt đầu từ 2
2. Số 2009 KHÔNG PHẢI là số hạng của dãy số trên.
Vì số 2009 là số lẻ.
Bài 2 : Cho dãy số 2 , 5 , 8 , 11 , 14 , 17 ....
1. 3 số hạng tiếp theo là : 20 , 23 , 26
2. Số 2009 có thuộc dãy số trên.
Vì ..............
a,ba so hang tiep theo la :49;64;81 b,so 1217ko thuoc nho k cho to nhe to dang am diem
a 3 số tiếp theo là 49,64,81 vì
1=1 nhân 1 4=2 nhân 2 9=3 nhân 3....
b số 1217= ko bằng 2 số giống nhau nhân với nhau nên không thuộc dãy số
2 ; 9 ; 4 ; 8; 6 ...
Ta thấy: Số thứ nhất với số thứ 3 hơn kém nhau 2 đơn vị, số thứ 3 với số thứ 5 cũng cách nhau 2 đơn vị.
Số thứ 2 và số thứ 4 được sắp xếp theo thứ tự giảm dần.
=> Suy ra đây là dãy được ghép bởi 2 dãy số khác.
Số cần điền tiếp là: 2 ; 9 ; 4 ; 8; 6 ; 7 ; 8 ; 6; 10.
Hok tốt