Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ 100 của dãy là :
1 + ( 100 - 1 ) x 3 = 298
Đáp số : 298
Hok tốt
Số thứ 80:
1+3x(80-1) = 238
Số lượng số hạng là:
(301-1):3 + 1 = 101 số hạng
2; 11; 29; 56; 92;...;
St2 = 2 + 9
St3 = 2 + 9 + 18 = 2 + 9 \(\times\) ( 1 + 2)
St4 = 2 + 9 + 18 + 27 = 2 + 9 \(\times\) (1 + 2 + 3)
St5 = 2 + 9 + 18 + 27 + 36 = 2 + 9 \(\times\)( 1 + 2 + 3 + 4)
..................
Stn = 2 + 9 \(\times\) ( 1 + 2 + 3 + ...+ n-1)
Stn = 2 + 9 \(\times\) (n-1+1)\(\times\)(n-1):2
Stn = 2 + 9 \(\times\) (n-1)\(\times\)n : 2
Số thứ 100 tức n = 100. Thay n = 100 vào biểu thức
Stn = 2 + 9 \(\times\) (n-1) \(\times\) n : 2 ta có:
Stn = 2 + 9 \(\times\) (100 - 1) \(\times\) 100 : 2 = 44552
b, St1 = 2
St2 = 2 + 9 \(\times\) 1 \(\times\) 2 : 2
St3 = 2 + 9 \(\times\) 2 \(\times\) 3 : 2
St4 = 2 + 9 \(\times\) 3 \(\times\) 4 : 2
......................................
St10 = 2 + 9 \(\times\) 9 \(\times\) 10 : 2
Cộng vế với vế ta được:
St1+St2+...+St10 = 2 \(\times\)10 + \(\dfrac{9}{2}\) \(\times\)( 1\(\times\)2 + 2 \(\times\)3 +...+9\(\times\)10)
Đặt : A = 1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+ 9 \(\times\)10
3 A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)3 +...+ 9\(\times\)10\(\times\)3
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)(5-2) +...+ 9\(\times\)10\(\times\)(11-8)
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)5 - 3\(\times\)4\(\times\)2 +...+ 9\(\times\)10\(\times\)11-9\(\times\)10\(\times\)8
3A = 9\(\times\)10\(\times\)11 ⇒ A = 9\(\times\)10\(\times\)11 : 3 = 330
S = 20 + \(\dfrac{9}{2}\) \(\times\) 330 = 1505
a) Số hạng thứ 1000 của dảy trên là: 0 + ( 1000 - 1) x 2 = 1998
b) Số 2016 là số hạng thứ: ( 2016 - 0) : 2 + 1 = 1009
c) Tổng của 1000 số hạng đầu tiên của dãy là: ( 0 + 1998) x 1000 : 2 = 999000
a) Quy luật :
Ta có : \(\frac{1}{8}\)= \(\frac{1}{2\cdot4}\)
\(\frac{1}{24}\)= \(\frac{1}{4\cdot6}\)
\(\frac{1}{48}\)= \(\frac{1}{6\cdot8}\)
\(\frac{1}{80}\)= \(\frac{1}{8\cdot10}\)
Do đó 2 số tiếp theo sẽ có mẫu lần lượt là 120 ( 10 . 12 ) và 168 ( 12 . 14 )
2 số tiếp theo là : \(\frac{1}{120}\)và \(\frac{1}{168}\)
b) Tổng 6 số hạng đầu của dãy số là :
\(\frac{1}{8}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{80}\)+ \(\frac{1}{120}\)+ \(\frac{1}{168}\)
= \(\frac{1}{2\cdot4}\)+ \(\frac{1}{4\cdot6}\)+ \(\frac{1}{6\cdot8}\)+ \(\frac{1}{8\cdot10}\)+ \(\frac{1}{10\cdot12}\)+ \(\frac{1}{12\cdot14}\)
= \(\frac{1}{2}\). ( \(\frac{2}{2\cdot4}\)+ \(\frac{2}{4\cdot6}\)+ \(\frac{2}{6\cdot8}\)+ \(\frac{2}{8\cdot10}\)+ \(\frac{2}{10\cdot12}\)+ \(\frac{2}{12\cdot14}\))
= 1/2 x ( 1 - 1/4 + 1/4 - 1/6 + 1/6- 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )
= 1/2 x ( 1 - 1/14 )
= 1/2 x 13/14
= 13/28