K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)(đpcm)

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

13 tháng 12 2017

a) *Xét  ΔABD & ΔEBD

      +)AB=BE

      +)^ABD=^DBC

      +)chung BD

=>ΔABD=ΔEBD(cgc) 

b) vì ΔABD=ΔEBD(cmt) 

=>^A=^BED(2 góc tg ứng) 

=>^BED=90°(^A=90°)

=>DE vg góc vs BC

c) vì  ΔBAC vg ở  A

=>^BAH+^HAC=90°   (1)

Lại có :ΔAHC vg ở  H

=>^HAC+^ACB=90°    (2)

Từ (1),(2)=>^BAH=^ACB(đpcm) 

26 tháng 3 2018

Ta có :

a) *Xét  ΔABD & ΔEBD

      +)AB=BE

      +)^ABD=^DBC

      +)chung BD

=>ΔABD=ΔEBD(cgc) 

b) vì ΔABD=ΔEBD(cmt) 

=>^A=^BED(2 góc tg ứng) 

=>^BED=90°(^A=90°)

=>DE vg góc vs BC

c) vì  ΔBAC vg ở  A

=>^BAH+^HAC=90°   (1)

Lại có :ΔAHC vg ở  H

=>^HAC+^ACB=90°    (2)

Từ (1),(2)=>^BAH=^ACB(đpcm) 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE và BA=BE

=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE

DE<DC

=>AD<DC

d: AH vuông góc BC

DE vuông góc BC

=>AH//DE

góc AFD=góc BFH=90 độ-góc DBC

góc ADF=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AFD=góc ADF
=>ΔADF cân tại A

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

25 tháng 12 2018

a) Xét tam giác BAD và tam giác BED ta có 

         AB=AD(gt)

         góc B1= góc B2 (tia phân giác)

         BD chung

  tam giác BAD = tam giác BED (c.g.c)

 Suy ra: góc A = góc E ( 2 góc tương ứng )

b) Ta có : góc H =E ( =90 độ)

suy ra : AH//DE ( vì AH và DE cùng vuông với BC)

Còn câu c để mình nghĩ lốt nha

26 tháng 12 2018

giup mk vs

13 tháng 12 2017

Xét tam giác vuông ABHGóc HAB+ góc HBA=90độ(1)

Xét tam giác vuông ABC: góc ABC + góc ACB=90 độ(2)

Từ (1),(2)=> góc HAB = góc HCA

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD