K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2022

đề bài thiếu k chứng minh dc nha

20 tháng 4 2022

A B C H I K

a/ Xét 2 tg vuông HAC và tg vuông ABC có

\(\widehat{ACH}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAC đồng dạng với tg ABC (g.g.g)

b/

Xét tg vuông ABH

\(AH^2=AB^2-BH^2\) (Pitago) (1)

Xét tg vuông ACH có

\(AH^2=AC^2-CH^2\) (Pitago) (2)

Cộng 2 vế của (1) và (2) có \(2.AH^2=\left(AB^2+AC^2\right)-\left(BH^2+CH^2\right)\) (3)

Ta có 

\(BH^2+CH^2=\left(BH+CH\right)^2-2.BH.CH=BC^2-2.BH.CH\)

Xét tg vuông ABC có \(AB^2+AC^2=BC^2\)

Thay vào (3)

\(2.AH^2=BC^2-BC^2+2.BH.CH\Rightarrow AH^2=BH.CH\)

c/

Xét tg ABH có 

\(\dfrac{IH}{IA}=\dfrac{BH}{BA}\) (1) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)

Xét tg ACH có

\(\dfrac{KH}{KC}=\dfrac{AH}{AC}\)(2) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)

Xét tg vuông ABH và tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg ABH đồng dạng với tg ABC (g.g.g)

\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AH}{AC}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{IH}{IA}\) => IK//AC (Talet đảo trong tam giác) (đpcm)

 

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tạiH co

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA=AC/HA

=>BA^2=BH*BC

b: BI là phân giác

=>IA/IH=BA/BH=AC/HA

c: AK là phân giác của góc HAC

=>HK/KC=HA/AC=HI/IA

=>KI//AC

29 tháng 3 2023

c.ơn nhiều ạyeu

25 tháng 4 2021

A B C H I 3 5 K M N

a) Xét \(\Delta ABC\)và \(\Delta HBA\)

           \(\widehat{A}=\widehat{H}=90^o\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)

\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)

b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co

\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Vì BI là phân giác của góc ABH

\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4

Theo tính chất dãy tỉ số bằng nhau ta có

\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)

c) Xét tam giác CHA và tam giác AHB 

\(\widehat{H}=\widehat{H}=90^o\)

\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)

=> Tam giác CHA ~ tam giác AHB (gg)

\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)

Vì BI là phân giác của tam giác AHB

\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)

Vì CK là phân giác của tam giác AHC 

\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)

Từ (1), (2) và (*)

\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)

d) Gọi N là giao điểm của HM và AC

=> bài toán trở thành chứng minh N là trung điểm

25 tháng 4 2021

bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh

6 tháng 6 2021

Đây nhé!

Không có mô tả.

Không có mô tả.

Không có mô tả.

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Vậy: BC=35cm

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)

hay AH=16,8(cm)

Vậy: BC=35cm; AH=16,8cm

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))

\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)

\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)

Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)

19 tháng 3 2021

Cảm ơn ạ.