K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

a, Xét tứ giác ADHE có : 

^A = ^ADH =  ^HEA = 900

Vậy tứ giác ADHE là hcn 

Vậy AH = DE ( 2 đường chéo bằng nhau ) 

b, Xét tam giác AEH và tam giác AHC có : 

^AEH = ^AHC = 900

^A _ chung 

Vậy tam giác AEH ~ tam giác AHC ( g.g ) 

=> AH/AC = AE/AH => AH^2 = AE.AC (1) 

tương tự với tam giác ADH ~ tam giác AHB (g.g)

=> AD/AH = AH/AB => AH^2=AD.AB (2) 

Từ (1) ; (2) suy ra AE.AC = AD.AB 

c, Xét tam giác ABH và tam giác CAH 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH ~ tam giác CAH (g.g)

=> AH/CH = BH/AH => AH^2 = BH.CH 

=> CH = AH^2/BH = 144/9 = 16

=> BC = BH + CH = 25 cm 

Diện tích tam giác ABC là : SABC = 1/2 . AH . BC 

= 1/2 . 12 . 25 = 150 cm2

a: Xét tứ giác ADHE có 
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>DE=AH

=>\(DE^2=BH\cdot CH\)

b: Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)

16 tháng 11 2021

\(\widehat{BHD}=\widehat{HAB}\)

\(\widehat{HAB}=\widehat{ADE}\)

Do đó: \(\widehat{ADE}=\widehat{BHD}\)

a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc HAB=góc HCA

=>ΔABH đồng dạng với ΔCAH

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đường cao

nên AE*AC=AH^2

=>AD*AB=AE*AC=AH^2

Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !