K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(b,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)

Vì BE là p/g nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}=\dfrac{5}{13}\Rightarrow AE=\dfrac{5}{13}EC\)

Mà \(AE+EC=AC=12\Rightarrow\dfrac{18}{13}EC=12\Rightarrow EC=\dfrac{26}{3}\left(cm\right)\)

\(\Rightarrow AE=\dfrac{10}{3}\left(cm\right)\)

Vì CF là p/g nên \(\dfrac{AF}{FB}=\dfrac{AC}{BC}=\dfrac{12}{13}\Rightarrow AF=\dfrac{12}{13}FB\)

Mà \(AF+FB=AB=5\Rightarrow\dfrac{25}{13}FB=5\Rightarrow FB=\dfrac{13}{5}\left(cm\right)\)

\(\Rightarrow AF=\dfrac{12}{5}\left(cm\right)\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-67^0=23^0\)

Vì BE,CF là p/g nên \(\left\{{}\begin{matrix}\widehat{ICB}=\dfrac{1}{2}\widehat{ACB}=11,5^0\\\widehat{IBC}=\dfrac{1}{2}\widehat{ABC}=33,5^0\end{matrix}\right.\)

\(\Rightarrow\widehat{BIC}=180^0-\widehat{ICB}-\widehat{IBC}=135^0\)

\(c,\widehat{AKI}=\widehat{AHI}=\widehat{KAH}=90^0\) nên AHIK là hcn

Mà AI là p/g \(\widehat{KAH}\)(I là giao 3 đường p/g tam giác ABC)

Nên AHIK là hình vuông

 

a: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=12(cm)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a: Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)