K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

Do đó:ΔABH\(\sim\)ΔCBA

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

Do đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CE\cdot CA\)

14 tháng 4 2022

giúp em câu c vs d luôn vs ạ =((

16 tháng 3 2017

a)

Xét tam giác ABH và tam giác CBA có: góc CAB=AHB(=90o)

góc B: chug

Nên tam giác ABH đồng dạng vs tam giác CBA (g.g)

b)

Có AH vuông với BC (gt), ED//AH (gt)

Suy ra ED vuông với BC hay CDE=90o (1)

Xét tam giác DEC và tam giác ABC có CDE=CAB(=90o)

góc C: góc chug

nên tam giác DEC đồng dạng với tam giác ABC (g.g)

Do vậy \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\Rightarrow CE.CA=CB.CD\)

19 tháng 3 2017

a, Xét tam giác ABH và tam giác CBA có : Góc B chung AB chung Góc AHB = Góc CAB Nên tam giác ABH đồng dạng với tam giác CBA (g . c . g) b, Ta có : AH vuông góc vs BC ED song song vs AH (gt) Nên ED vuông góc vs BC hay góc CDE = 90 độ Xét tam giác ABC và tam giác DEC có : Góc CAB = Góc CDE =90 độ Góc C chung Nên tam giác ABC đồng dạng vs tam giác DEC (g.g) Suy ra : CB/CA=CE/CD hay CB . CD = CE .CA

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) là góc chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

DO đo: ΔABH đồng dạng với ΔCBA

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

Do đo: ΔCDE đồng dạng với ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CE\cdot CA\)