K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

Gọi G là trọng tâm tam giác ABC

\(\vec{MA}.\vec{MB}+\vec{MB}.\vec{MC}+\vec{MC}.\vec{MA}\)

\(=\dfrac{1}{2}\left(\vec{MA}+\vec{MB}+\vec{MC}\right)^2-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)

\(\ge-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)

\(=-\dfrac{1}{2}\left[\left(\vec{MG}+\vec{GA}\right)^2+\left(\vec{MG}+\vec{GB}\right)^2+\left(\vec{MG}+\vec{GC}\right)^2\right]\)

\(=-\dfrac{1}{2}\left[3MG^2+2\vec{MG}\left(\vec{GA}+\vec{GB}+\vec{GC}\right)+GA^2+GB^2+GC^2\right]\)

\(\ge-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\)

\(min=-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\Leftrightarrow M\equiv G\)

NV
3 tháng 10 2021

a. Xem lại đề bài, trị tuyệt đối đầu tiên 2 biểu thức MC trừ đi nhau thấy ko đúng

b. Gọi D là trung điểm AB, E là trung điểm BC

\(\Rightarrow\) DE là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{AC}\) \(\Rightarrow\overrightarrow{AC}=2\overrightarrow{DE}\)

Ta có:

\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{AC}\Leftrightarrow2\overrightarrow{MD}=2\overrightarrow{DE}\) (do D là trung điểm AB nên \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MD}\))

\(\Rightarrow\overrightarrow{MD}=\overrightarrow{DE}\Rightarrow D\) là trung điểm ME

\(\Rightarrow\) M là điểm đối xứng E qua D

NV
3 tháng 10 2021

undefined

NV
26 tháng 11 2021

Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)

Ta có:

\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MI=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)

NV
26 tháng 11 2021

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Do I là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}\)

\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(\Leftrightarrow2\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=3.\left|2\overrightarrow{MI}\right|\)

\(\Leftrightarrow2.\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=6\left|\overrightarrow{MI}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MG}\right|=6\left|\overrightarrow{MI}\right|\)

\(\Leftrightarrow MG=MI\)

Tập hợp M là đường trung trực của đoạn thẳng IG

NV
23 tháng 12 2022

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

23 tháng 12 2022

<3 em cảm ơn "giáo viên"!

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

NV
26 tháng 11 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MG=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm G bán kính \(R=\dfrac{BC}{3}\)