K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

A B C 6 4 H  

Kẻ đường cao AH

Ta thấy :

\(\frac{BH}{AB}=cosB\Rightarrow BH=ABcosB=6cos60^o=3\left(cm\right)\)

\(\frac{AH}{AB}=sinB\Rightarrow AH=ABsinB=6sin60^o=3\sqrt{3}\left(cm\right)\)

\(CH=BC-BH=4-3=1\left(cm\right)\)

Áp dụng định lí Pitago cho tam giác vuông AHC

\(AC=\sqrt{AH^2+CH^2}=\sqrt{\left(3\sqrt{3}^2\right)+1^2}=2\sqrt{7}\left(cm\right)\)

Chúc bạn học tốt !!!

P
1 tháng 11 2019

ac đề cho r kìa :v

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

19 tháng 8 2021

Kẻ BH vuông góc với AC tại H.

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:

\(BH=sinA\cdot AB=sin60^0.4=2\sqrt{3}\left(cm\right)\)

\(AH=cosA.AB=cos60^0.4=2\left(cm\right)\)

Suy ra BH = 3(cm).

Áp dụng định lý Py-ta-go vào tam giác BHC vuông tại H, ta được:

\(BC=\sqrt{BH^2+CH^2}=\sqrt{12+9}=\sqrt{21}\left(cm\right)\)

Vậy BC = \(\sqrt{21}\)(cm)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

27 tháng 7 2016

bài này của lớp 9 hả bn?bucminh

29 tháng 9 2016

bài này làm sao mà giải đc

bạn vẽ chính xác hình ruj đo đi