Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{IJ}=\overrightarrow{AI}+\overrightarrow{AJ}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)
\(\overrightarrow{IJ}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AB}+3\overrightarrow{IJ}\)
\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\frac{1}{2}\overrightarrow{AB}+m.\overrightarrow{IJ}\)
\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{2}\left(\frac{1}{2}\overrightarrow{B}+3\overrightarrow{IJ}\right)\)
\(\overrightarrow{AD}=\frac{5}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{IJ}=\frac{5}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{IJ}\right)\)
Vậy để A;K;D thẳng hàng \(\Leftrightarrow m=\frac{3}{5}\)
a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)
\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)
b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)
\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)
bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)
C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)
\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)
\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)
Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Do I là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}\)
\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow2\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=3.\left|2\overrightarrow{MI}\right|\)
\(\Leftrightarrow2.\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=6\left|\overrightarrow{MI}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MG}\right|=6\left|\overrightarrow{MI}\right|\)
\(\Leftrightarrow MG=MI\)
Tập hợp M là đường trung trực của đoạn thẳng IG
Lời giải:
\(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{JA}+2(\overrightarrow{JA}+\overrightarrow{AB})+3(\overrightarrow{JA}+\overrightarrow{AC})=\overrightarrow{0}\)
\(\Leftrightarrow 6\overrightarrow{JA}+2\overrightarrow{AB}+3\overrightarrow{AC}=\overrightarrow{0}\)
\(\Leftrightarrow \overrightarrow{AJ}=\frac{2\overrightarrow{AB}+3\overrightarrow{AC}}{6}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)
Chắc chắn là đề bài sai rồi
Vế trái là 1 đại lượng vô hướng
Vế phải là 1 đại lượng có hướng (vecto)
Hai vế không thể bằng nhau được
Bạn xem lại đề ạ!
Nếu bạn đã chứng minh được D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ
Thì dễ dàng suy ra được: \(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\); \(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\); \(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)
( Vì chúng ta có tính chất: Nếu I là trung điểm đoạn thẳng AB thì mọi điểm M ta có: \(2\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{MB}\))