K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC

=> IM// AC; IM=1/2 AC hay IM=AK

Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.

lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.

b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF

=> IK//EF

IK=1/2EF hayEF=2IK.

c) Tam giác ABC có I là trung điểm của AB

K là trung điểm của AC

=> Ik là đường trung bình của tam giác ABC

=> IK//BC=> IK//HM, hay IKMH là hình thang.

Vì AIMK là hình chữ nhật(cmt)

nên AI//KM => góc AIK=MKI(so le trong)

ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)

từ hai điều này suy ra Góc IBH=MKI.(1)

Tam giác AHB vuông tại H, có HI là trung tuyến

=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK

=> Góc IBH = HIK(2)

Từ (1) và (2) suy ra Góc HIK=MKI

HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.

d) Ta có Góc HIK=MKI(cmt)

mà góc MKI=AIK(so le trong)

nên góc AIK=HIK

Xét tam giác AIK và HIK có

AI=IH(cmt)

AIK=HIK(cmt)

IK cạnh chung

=> hai tam giác bằng nhau theo trương hợp(c.g.c)

=>HK=AK

=> IK=2HK=2AK

mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:

1/2BC=2.1/2AC

=> AC=1/2BC.

Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều

=> Góc ACB=60độ=> Góc ABC=30 độ

câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa

chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.

28 tháng 8 2016

Có: \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (BC là cạnh chung)

\(\Rightarrow\Delta DBC=\Delta ECB\)

\(\Rightarrow\) AE//AB = AD//AC

\(\Rightarrow\) ED//BC

Từ a) có: \(\widehat{EDB}=\widehat{DBC}\) (so le trong)

\(\widehat{DBC}=\widehat{EBD}\) (BD là tia phân giác)

\(\Rightarrow\widehat{EDB}=\widehat{DBC}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\) cân tại E

\(\Rightarrow BE=ED\)

AI cắt ED tại J', ta cm J' ≡ J 
Từ tính chất tam giác đồng dạng ta có: 
EJ'/BI = AE/AB = ED/BC = ED/2BI 
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 
Vậy A,I,J thẳng hàng 
*OI cắt ED tại J" ta cm J" ≡ J 
hiễn nhiên ta có: 
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 
mặt khác: 
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 
=> tgiác J"DO đồng dạng với tgiác IBO 
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 
Tóm lại A,I,O,J thẳng hàng