K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Tự thay điểm P bằng điểm K theo đầu bài của bạn

 Nối H với N và P với M.

HM thuộc BC => HM // PN => tứ giác MNPH là hình thang

Xét tam giác ABC có:

 AP = PB

 BM = MC .

=> PM là đường trung bình của tam giác ABC => PM = \(\frac{1}{2}\)AC  (3)

 - Tam giác AHC vuông tại H có HN là đg trung tuyến ứng với cạnh huyền AC 

=> HN =\(\frac{1}{2}\) AC  (4)

Từ (3) và (4) => PM = HN (vì cùng = \(\frac{1}{2}\) AC)

Hình thang MNPH có PM = HN => MNPH là hình thang cân (dấu hiệu)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$

$\Rightarrow MNPH$ là hình thang $(*)$

Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)

$\Rightarrow $MHB$ cân tại $M$

$\Rightarrow \widehat{MHB}=\widehat{MBH}$

Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)

$\Rightarrow \widehat{MHB}=\widehat{NPC}$

$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$

Hay $\widehat{MHP}=\widehat{NPH}(**)$

Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Hình vẽ: 

28 tháng 10 2021

có chứ sao ko hihi

29 tháng 10 2021

có chứ

Giải thích các bước giải:

a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2

tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2 

⇒MQ || NP (cùng || AH)

b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC) 

M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC

⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP 

⇒MNPQ là hình chữ nhật

c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP 

mà MQ=AH/2  và  MN=BC/2 ⇒AH=BC 

12 tháng 10 2021

a. N là trung điểm AC; P là trung điểm CH⇒NP là đường trung bình của ΔACH ⇒NP || AH và NP=AH/2

tương tự: MQ là đường trung bình ΔABH ⇒MQ || AH và MQ=AH/2 

⇒MQ || NP (cùng || AH)

b. theo câu a⇒NP và MQ ⊥ BC (vì AH ⊥ BC) 

M là trung điểm AB, N là trung điểm AC⇒MN là đường trung bình ΔABC

⇒MN || BC và MN=BC/2⇒MN ⊥ MQ và MN ⊥ NP 

⇒MNPQ là hình chữ nhật

c. để MNPQ là hình vuông ⇔MN=MQ=NP=QP 

mà MQ=AH/2  và  MN=BC/2 ⇒AH=BC 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)

mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)

nên MN//BE và MN=BE

Xét tứ giác BMNE có 

MN//BE

MN=BE

Do đó: BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến ứng với cạnh huyền AB

nên HM=AM=MB

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến ứng với cạnh huyền AC

nên HN=AN=NC

Ta có: HM=AM

nên M nằm trên đường trung trực của AH\(\left(1\right)\)

Ta có: HN=AN

nên N nằm trên đường trung trực của AH\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH

b: Xét ΔBAC có

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung trực của ΔBAC

Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)

mà \(AN=\dfrac{AC}{2}\)

nên ME=AN

mà AN=HN

nên HN=ME

Xét tứ giác HMNE có 

MN//HE

nên HMNE là hình thang

Hình thang HMNE có HN=ME

nên HMNE là hình thang cân

16 tháng 8 2015

xet tam giac ABC ta co

M la trung diem AC (gt) N la trung diem AB (gt)-> MN la duong trung binh tam giac ABC-> MN//BC-> MNHP la hinh thang

cmtt NP la duong trung binh tam giac ABC-> NP=1/2 AC

xet tam giac AHC vuong tai H ta co 

HM la duong trung tuyen ung voi canh huyen AC ( M la trung diem AC)--> HM=1/2 AC

ma NP=1/2AC (cmt )

nen NP=HM

Xét hình thang MNHP ta có NP=HM (cmt)-> MNHP là hình thang cân ( hình thang có 2 đường chéo bằng nhau)

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân