Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
nên AH=AK(hai cạnh tương ứng)
Ta có: AH+HC=AC(H nằm giữa A và C)
AK+KB=AB(K nằm giữa A và B)
mà AC=AB(ΔABC cân tại A)
và AH=AK(cmt)
nên HC=KB
Ta có: ΔABH=ΔACK(cmt)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
hay \(\widehat{KBO}=\widehat{HCO}\)
Xét ΔKBO vuông tại K và ΔHCO vuông tại H có
KB=HC(cmt)
\(\widehat{KBO}=\widehat{HCO}\)(cmt)
Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)
c) Ta có: IB=IC(gt)
nên I nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: OB=OC(ΔKOB=ΔHOC)
nên O nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,O,I thẳng hàng(đpcm)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E
Trần Khắc Nguyên Bảo16 tháng 5 2016 lúc 21:32
1.Ta có : Tam giác ABC là tam giác vuông cân.
=>AB=AC
Mặt khác có:
Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]
=> BH=AK [đpcm]
Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì
Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]
AH=CK [ câu a ]
=>MH=MK
Ta có: [AM là đường cao]
Từ => HMK vuông
Kết hợp =>MHK là tam giác vuông cân.
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔABH và ΔACK có
\(\widehat{BAH}\) chung
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
a, xét tam giác AMB và tam giác AMC có: AM chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAM = góc CAM do AM là pg của góc BAC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
b, xét tam giác BKC và tam giác CHB có :BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BKC = góc CHB = 90
=> tam giác BKC = tam giác CHB (ch-gn)
=> BH = CK (đn)
a: Xét ΔBHA vuông tại H có
\(BA^2=BH^2+HA^2\)
hay AH=3(cm)
b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có
BA=BC
BH chung
Do đó: ΔABH=ΔCBH
c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có
BH chung
\(\widehat{IBH}=\widehat{KBH}\)
Do đó: ΔBIH=ΔBKH
Suy ra: HI=HK
d: Xét ΔBAC có BI/BA=BK/BC
Do đó: IK//AC
a, xét tam giác AMB và tam giác AMC có: AM chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAM = góc CAM do AM là pg của góc BAC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
b, xét tam giác BKC và tam giác CHB có :BC chung
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc BKC = góc CHB = 90
=> tam giác BKC = tam giác CHB (ch-gn)
=> BH = CK (đn)
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
a) Xét \(\Delta ABH\)và \(\Delta ACK\)có :
\(\widehat{A}\)Chung
\(AB=AC\) ( vì tam giác ABC cân )
\(\widehat{AHB}=\widehat{AKC}=90^o\) ( GT)
Do đó tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)
b) Vì tam giác ABH = tam giác ACK ( câu a )
\(\Rightarrow CK=BH\) ( cặp cạnh tương ứng)
Xét tam giác CBK và tam giác BCH ta có :
\(BC:\)Cạnh chung
\(\widehat{BKC}=\widehat{CHB}=90^o\) (GT)
\(BC:\)Cạnh chung
Do đó tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông)