K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

A B C K H

18 tháng 8 2018

a) Xét \(\Delta ABH\)và \(\Delta ACK\)có :

\(\widehat{A}\)Chung

\(AB=AC\) ( vì tam giác ABC cân )

\(\widehat{AHB}=\widehat{AKC}=90^o\) ( GT)

Do đó  tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)

b) Vì tam giác ABH = tam giác ACK ( câu a )

\(\Rightarrow CK=BH\) ( cặp cạnh tương ứng)

Xét tam giác CBK và tam giác BCH ta có :

\(BC:\)Cạnh chung 

\(\widehat{BKC}=\widehat{CHB}=90^o\) (GT)

\(BC:\)Cạnh chung

Do đó tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông)

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

nên AH=AK(hai cạnh tương ứng)

Ta có: AH+HC=AC(H nằm giữa A và C)

AK+KB=AB(K nằm giữa A và B)

mà AC=AB(ΔABC cân tại A)

và AH=AK(cmt)

nên HC=KB

Ta có: ΔABH=ΔACK(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có 

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

c) Ta có: IB=IC(gt)

nên I nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: OB=OC(ΔKOB=ΔHOC)

nên O nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra A,O,I thẳng hàng(đpcm)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

b: góc EAH=góc CAH=góc EHA

=>ΔEAH cân tại E

3 tháng 9 2020

nhanh mik tích cho

3 tháng 9 2020

Trần Khắc Nguyên Bảo16 tháng 5 2016 lúc 21:32

1.Ta có : Tam giác ABC là tam giác vuông cân.

=>AB=AC

Mặt khác có:

Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K

Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]

=> BH=AK [đpcm]

Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì

Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]

AH=CK [ câu a ]

=>MH=MK

Ta có: [AM là đường cao]

Từ => HMK vuông

Kết hợp =>MHK là tam giác vuông cân.

a: Xét ΔAMB và ΔAMC có 

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔAMB=ΔAMC

b: Xét ΔABH và ΔACK có

\(\widehat{BAH}\) chung

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

1 tháng 3 2022

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

a: Xét ΔBHA vuông tại H có 

\(BA^2=BH^2+HA^2\)

hay AH=3(cm)

b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có 

BA=BC

BH chung

Do đó: ΔABH=ΔCBH

c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có 

BH chung

\(\widehat{IBH}=\widehat{KBH}\)

Do đó: ΔBIH=ΔBKH

Suy ra: HI=HK

d: Xét ΔBAC có BI/BA=BK/BC

Do đó: IK//AC

19 tháng 2 2020

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

25 tháng 4 2018

a) Xét tam giác BCH và tam giác CBK có 

     góc KBC = góc HCB ( vì tam giác ABC cân )

 BC : cạnh chung

góc BKC = CHB = 90 độ (GT )

Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )

b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )

=> BH = CK ( cặp cạnh tương ứng )

c) Vì tam giác BCH = tam giác CBK ( câu a )

=> CH = BK ( 2 cạnh tương ứng )

  Xét tam giác KIB và tam giác HIC có :

Góc KIB = góc HIC ( 2 góc đối đỉnh )             (1)

BK = CH ( chứng minh trên )                            (2)

góc IKB = góc IHC = 90 độ (GT )                       (3)

Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )

=>  IB = IC ( cặp cạnh tương ứng )

=> tam giác BIC cân tại I 

25 tháng 4 2018

A B C K H I