Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
a)Sao lại chứng minh tam giác ACD= tam giác DMA
Mà tam giác DMC<ADC(xem lại)
b)Xét tam giác DMC và tam giác BMA
MB=MD(gt)
DMC=AMB(đđ)
MA=MC(Vì M là trung điểm AC)
⇒⇒tam giác DMC=tam giác BMA(c.g.c)
⇒⇒AB=DC(cặp cạnh tương ứng)(1)
Mà AB=AC(vì tam giác ABC cân)(2)
Từ (1) và (2) suy ra:DC=AC
Vậy tam giác ACD cân tại D
c/
+ Xét tam giác BDE có
DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)
+ Ta có
CA=CE (đề bài)
MA=MC (đề bài)
=> CE=2.MC hay MC=1/3ME (2)
Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE
MA=MC(Vì M là trung điểm AC)
$⇒⇒$⇒⇒tam giác DMC=tam giác BMA(c.g.c)
$⇒⇒$⇒⇒AB=DC(cặp cạnh tương ứng)(1)
Mà AB=AC(vì tam giác ABC cân)(2)
Từ (1) và (2) suy ra:DC=AC
Vậy tam giác ACD cân tại D
c/
+ Xét tam giác BDE có
DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)
+ Ta có
CA=CE (đề bài)
MA=MC (đề bài)
=> CE=2.MC hay MC=1/3ME (2)
Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE
a. Xét tam giác BMC và tam giác DMA có
MB=MD(gt) BMC=DMA(đối đỉnh)
MA=MC(vì M là trung điềm AC)
Vậy tam giác BMC = tam giác DMA(c-g-c)
=>MBC=MDA( 2 góc tương ứng)
=> AD // BC
b. Xét tam giác AMB và tam giác CMD có
MA=MC(vì M là trung điềm AC)
AMB=CMD( đối đỉnh)
MB=MD(gt)
Vậy tam giác AMB = tam giác CMD(c-g-c)
=> AB=CD(2 cạnh tương ứng)
mà AB=AC(vì tam giác ABC cân tại A)
=> AC=CD
=> tam giác ACD cân tại C
c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)
=> EM là đường trung tuyến thứ nhất (1)
mặt khác AC=CE(gt)
MC=1/2 AC (vì M là trung điềm AC)
=> MC= 1/2 CE
Cho tam giac ABC va M la trung diem cua BC . TREN TIA DOI cua tia MA laydiem D sao cho MD=MA
a) chung minh tam giac AMB=tam giac DMC
b) chung minhCD//AB
a, Do M là trung điểm AC=> AM=MC
Xét ∆ AMD và ∆ CMB ta có:
AM=MC( cmt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)( đối đỉnh)
MD=BM( gt)
=> ∆ AMD= ∆ CMB ( c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)( 2 góc tương ứng)
Mad 2 góc này so le trong
Nên AD//BC.
b,
Xét ∆ AMBvà ∆ CMD ta có:
AM=MC( cmt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)( đối đỉnh)
MD=BM( gt)
=> ∆ AMB= ∆ CMD ( c.g.c)
=> AB=CD( 2 cạnh tương ứng)
Do ∆ABC cân tại A => AB=AC
Mà AB=CD (cmt)
Nên AC=CD
Xét ∆ACD có: AC=CD
=>∆ACD cân tại C
a) Xét ΔAMD và ΔCMB ta có:
BM = DM (GT)
\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh)
CM = AM (GT)
=> ΔAMD = ΔCMB (c - g - c)
=> \(\widehat{ADM}=\widehat{MBC}\) ( 2 góc tương ứng)
Mà 2 góc này lại là 2 góc so le trong
=> AD // BC
b) Xét ΔAMB và ΔCMD ta có:
AM = CM (GT)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
MB = DM (GT)
=> ΔAMB = ΔCMD (c - g - c)
=> AB = CD (2 cạnh tương ứng)
Mà AB = AC (GT)
=> CD = AC
=> ΔACD cân tại C
c/ Cái gì D bạn ?
Chứng minh điểm D đi qua trung điểm của BE mà bạn