K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Câu này à Trần Thị Liên

8 tháng 5 2017

uk

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

21 tháng 2 2017

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x

\(\left(1\right)\)Tại x=-1, ta có: \(P=3x^2+5=3\left(-1\right)^2+5=3+5=8\)

Tại x=0, ta có: \(P=3x^2+5=3.0^2+5=0+5=5\)

Tại x=3, ta có: \(P=3x^2+5=3.3^2+5=3.9+5=27+5=32\)

(2) Ta có: \(P=3x^2+5\)mà  \(x^2\ge0\)với mọi x => 3x^2 \(\ge\)0 với mọi x 

Lại có 5 dương => P \(\ge\)0 hay đa thức P luôn dương với mọi giá trị của x

24 tháng 6 2020

A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2

        = 5x2 + 5

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)

=> A(x) luôn dương với mọi x

B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9

        = -x2 - 2

Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)

=> B(x) luôn âm với mọi x 

24 tháng 6 2020

\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)

\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)

19 tháng 7 2021

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y 

14 tháng 4 2018

Ta có : 

\(C=A+B=\left(3x^4+2x^2-5x^3+x-5\right)+\left(-3x^4-x^2+x+7+5x^3\right)\)

\(C=A+B=3x^4+2x^2-5x^3+x-5-3x^4-x^2+x+7+5x^3\)

\(C=A+B=\left(3x^4-3x^4\right)+\left(2x^2-x^2\right)+\left(-5x^3+5x^3\right)+\left(x+x\right)+\left(-5+7\right)\)

\(C=A+B=x^2+2x+2\)

Lại có : 

\(C=x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge0+1=1>0\)

Vậy \(C=A+B\)  luôn có giá trị dương với mọi giá trị của x 

Chúc bạn học tốt ~ 

ta có x2+x+1= x2+x+1+x-x= (x+1)2-x

Vì (x+1)2 \(\ge\)0   và (x+1)2>x 

nên x2+x+1 luôn luôn dương với mọi giá trị của x

29 tháng 3 2018

xét x>0 suy ra biểu thúc có gi trị dương

xét x,0

ta có \(x^2\)>0

suy ra \(x^2\)+x > 0

suy ra \(x^2\)+x+1 luôn luôn  dương với mọi gi trị của x