K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

có: 2(x-3)^2 >hoặc = 0 với mọi x

suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x

suy ra: P(x) > 0 với mọi x

suy ra: đa thức không có nghiệm (đpcm)

21 tháng 3 2016

giả sử 

=> P(x)=2(x-3)^2+5=0

=> 2(x-3)^2=-5

=> (x-3)^2=-2.5

vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại

=> đa thức trên vô nghiệm

24 tháng 4 2019

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)

Vậy đa  thức trên ko có nghiệm

24 tháng 4 2019

a ngược là gì vậy

25 tháng 4 2018

Câu 1:

Ta có:

\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

nên\(\left(x+1\right)^2+1\ge1\)

\(\Rightarrow P\left(x\right)\ge1\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm

25 tháng 4 2018

Câu 2:

Ta có:

\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm.

\(P\left(x\right)=x^3-x+5=0\)

\(x^3-x=-5\)

\(x.\left(x^2-1\right)=-5\)

Lập bảng ( vì đề nhủ c/m nghiệm nguyên)

Loại cả 4 cái

vậy...

21 tháng 3 2020

Ta có : P( x ) = x3 - x + 5 

                     = x ( x2 - 1 ) + 5

                     = x ( x - 1 ) ( x + 1 ) + 5 

Gọi P( x ) có nghiệm nguyên là : x = a 

\( \implies\)P( a ) = a ( a - 1 ) ( a + 1 ) + 5 = 0

\( \implies\)  a ( a - 1 ) ( a + 1 ) = - 5

Vì a là số nguyên \( \implies\)  a ; ( a - 1 ) ; ( a + 1 ) là ba số nguyên liên tiếp . Do đó chúng chia hết cho 2 

Mà - 5 không chia hết cho 2

\( \implies\)  a ( a - 1 ) ( a + 1 ) không thể bằng - 5 

\( \implies\) Không có giá trị a nguyên nào thỏa mãn P( a ) = 0

Vậy đa thức P( x ) =  x3 - x + 5 không có nghiệm nguyên ( đpcm )

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

17 tháng 2 2021

yếu quá

24 tháng 4 2019

Có thể thấy ngay \(2\left(x-3\right)^2\ge0\left(\forall x\right)\Rightarrow P\left(x\right)=2\left(x-3\right)^2+5\ge5>0\left(\forall x\right)\)

Do đó \(P\left(x\right)\) luôn vô nghiệm.

Chúc bạn học tốt nhaok.

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên