Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yêu cầu đề bài có vẻ không rõ ràng lắm, bạn viết lại được không?
a, n \(\in\) Z sao cho (2n - 3) \(⋮\) (n+1)
2n + 2 - 5 ⋮ n + 1
2(n+1) - 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -6; -2; 0; 4}
Ý b đề ko rõ ràng em nhé
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
Theo bài ra ta có phương trình:
\(\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^3+b\left(-1\right)^2+c.\left(-1\right)+d=50\\P\left(0\right)=a.0+b.0+c.0+d=1\\P\left(1\right)=a.1^3+b.1^2+c.1+d=100\\P\left(2\right)=a.2^3+b.2^2+c.2+d=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\left(-1\right)=-a+b-c+d=50\\P\left(0\right)=d=1\\P\left(1\right)=a+b+c+d=100\\P\left(2\right)=8a+4b+2x+d=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\left(-1\right)=-a+b-c+1=50\\P\left(1\right)=a+b+c+1=100\\P\left(2\right)=8a+4b+2c+1=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\left(-1\right)=-a+c-c=49\\P\left(1\right)=a+b+c=99\\P\left(2\right)=8a+4b+2c=119\end{matrix}\right.\)
Giải hệ phương trình trên, ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-227}{6}\\b=74\\c=\dfrac{377}{6}\\d=1\end{matrix}\right.\)
Thay \(a=\dfrac{-227}{6},b=74,c=\dfrac{377}{6},d=1\) và \(x=3\) vào đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) ta được:
\(P\left(3\right)=\left(\dfrac{-227}{6}\right).3^3+74.3^2+\dfrac{377}{6}.3+1\)
\(P\left(3\right)=-166\)
Vậy P(3)=-166
ĐK : \(a\ne0\) .
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}a+b+c+1=100\\-a+b-c+1=50\\d=1\\8a+4b+2c+1=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=99\\-a+b-c=49\\8a+4b+2c=119\\d=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-227}{6}\\b=74\\c=\dfrac{377}{6}\\d=1\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=-\dfrac{227}{6}x^3+74x^2+\dfrac{377}{6}x+1\)
\(\Rightarrow P\left(3\right)=-\dfrac{227}{6}.3^3+74.3^2+\dfrac{377}{6}.3+1=-166\)
Ta có: \(\left\{{}\begin{matrix}f\left(5\right)=125a+25b+5c+2021\\f\left(4\right)=64a+16b+4c+2021\end{matrix}\right.\)
\(f\left(5\right)-f\left(4\right)=2020\) \(\Rightarrow61a+9b+c=2020\)
Ta có: \(\left\{{}\begin{matrix}f\left(7\right)=343a+49b+7b+2021\\f\left(2\right)=8a+4b+2c+2021\end{matrix}\right.\)
\(\Rightarrow f\left(7\right)-f\left(2\right)=335a+45b+5b=5\left(61a+9b+c\right)=5.2020\)
\(\Rightarrow f\left(7\right)-f\left(2\right)\) chia hết cho 5 nên nó là hợp số.