K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

Ta có h(2) = 12a + 10, h(1) = 3a + 5.

Vì h(2) = 2h(1)

⇒ 12a + 10 = 2(3a + 5) ⇒ 12a + 10 = 6a + 10

⇒ 6a = 0 ⇒ a = 0. Chọn B

13 tháng 5 2021

A

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

4 tháng 4 2018

\(a)\) Ta có : 

\(x^2+x=0\)

\(\Leftrightarrow\)\(x\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)

\(b)\) Ta có : 

\(\left|x\right|\ge0\)

\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)

Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm ) 

Chúc bạn học tốt ~ 

4 tháng 4 2018

1/a/Cho x^2+x=0

               x(x+1)=0

=>x=0 hoặc x+1=0

                       x=-1

Vậy nghiệm của H(x) là 0;-1

b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0

Vậy Q(x) vô nghiệm

2/P(x)=ax^2+5x-3

  P(12)=a.12^2+5.12-3=0

              a.144+60-3=0

                144a=-57

                  a=-57:144

                  a=-19/48

4 tháng 4 2020

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0

Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)

\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)

2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)

g(x) có bậc 1 => a-1=0 => a=1. Khi đó

\(g\left(x\right)=2x+b\)lại có g(2)=1

\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)

3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)

h(x) có bậc 2 => 5-a=0 => a=5

Khi đó h(x)=-7x2+8x-b

h(-1)=3 => -7(-1)2+8.(-1)+b=3

<=> -7-8+b=3 => b=18

4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1

r(x) bậc 2 => a+4=0 => a=-4

r(2)=5 => (-4).22+b.2-1=5

<=> -16+2b-1=5

<=> 2b=22 => b=11

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +bBài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,yBài 3: Cho đa thức f(x) = x2 +4x -5a) Số -5 có phải nghiệm của đa thức f(x) ko?b) Viết tập hợp S tất cả các nghiệm của f(x)Bài 4: Thu gọn rồi tìm...
Đọc tiếp

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>

Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b

Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y

Bài 3: Cho đa thức f(x) = x2 +4x -5

a) Số -5 có phải nghiệm của đa thức f(x) ko?

b) Viết tập hợp S tất cả các nghiệm của f(x)

Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:

a) f(x) = x(1-2x) + (2x -x +4)

b) g(x)= x(x-5) -x(x+2) +7x

c) h(x) = x(x-1) +1

Bài 5: Cho 

f(x)=x-101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)

Bài 6: Cho f(x) = ax+ bx +c . Biết 7a +b = 0

Hỏi f(10) , f(-3) có thể là số âm ko?

Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0

Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8

Bài 8: Cho f(x)= ax+ 4x(x -1) +8 

g(x) = x3 -4x(bx +1) +c -3

trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)

Bài 9: Cho f(x) = 2x+ ax +4 ( a là hằng)

g(x)= x2 -5x - b ( b là hằng)

Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)

 

 

 

1

rtyuiytre