Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số của các hạng tử của đa thức là:
f(x)= 11994.(-1)1995=-1
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
Ta có:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0\)
\(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
=>A(1) là tổng các hệ số
Áp dụng:
\(f\left(1\right)=\left(1^2+2.1+1\right)^{30}\)
\(f\left(1\right)=4^{30}\)
Vậy tổng các hệ số của f(x) là 4
tổng các hệ số là giá trị của f(x) khi x=1. VD: f(x)=2x^2+3x-1 suy ra tổng các hệ số là f(1)=2.1^2+3*1-1=4
tương tự bài kia ta có tổng các hệ số là 1