K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

a) Thay m=1 vào f(x) ta có :

f(x)=(1-2)x+2.1-3=(-1)x-1=0

(-1)x=1

x=1:(-1)

x=-1

Vậy nghiệm của f(x) là f(-1)

b) ta có f(-4)=(m-2).(-4)+2m-3=0

m.(-4)+8+2m-3=0

-2m+5=0

-2m=-5

m=-5:(-2)

m=5/2

c) mình k hiểu đề

20 tháng 3 2021

a, Khi $f(x)$ có nghiệm là $-4$ thì ta suy ra

$f(-4)=0$ hay $(m-2).(-4)+2m-3=0$

$⇔-2m=-5$

$⇔m=\dfrac{5}{2}$

b, Khi $f(x)$ có nghiệm nguyên thì tức là
$f(x)=0;x∈Z$

hay $(m-2)x+2m-3=0$

$⇔(m-2)x=3-2m$

với $m=2$ thì ta suy ra $0=1$ loại
$m \neq 2$ suy ra $x=\dfrac{3-2m}{m-2}$

hay $x=\dfrac{-1-2(m-2)}{m-2}=\dfrac{-1}{m-2}-2$

Mà $x∈Z;-2∈Z$

Nên $\dfrac{-1}{m-2}∈Z$

Hay $m-2∈Ư(-1)$

suy ra \(m-2∈{-1;1}\)

nên $m=1$ hoặc $m=3$

Với $m=1$ suy ra $x=-3$

$m=3$ suy ra $x=-3$

Vậy $m=1$ hoặc $m=3$ thì đa thức cho có nghiệm nguyên $x=-3$

 

25 tháng 6 2023

a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:

\(\left(-2\right)^2-2m+2=0\)

\(\Rightarrow4-2m+2=0\)

\(\Rightarrow6-2m=0\)

\(\Rightarrow2m=6\)

\(\Rightarrow m=3\)

b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+2x+x+2=0\)

\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)

Bài 9:

a: f(-4)=0

=>-4(m-1)+3m-1=0

=>-4m+4+3m-1=0

=>-m+3=0

=>m=3

b: f(-5)=-1

=>-5(m-1)+3m-1=-1

=>-5m+5+3m-1=-1

=>-2m+4=-1

=>-2m=-5

=>m=5/2

1 tháng 3 2019

a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)

                                        \(\Leftrightarrow24-3m=0\)

                                        \(\Leftrightarrow m=8\)

b, Với m = 8 thì \(x^2-8x+15=0\)

                 \(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)

                \(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

Vậy \(S=\left\{3;5\right\}\)