Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x=100\Rightarrow x-1=99\)
\(f\left(x\right)=x^8-\left(x-1\right)x^7-...-\left(x-1\right)x+25\)
\(=x^8-x^8+x^7-...-x^2+x=x+25\)
\(\Rightarrow f\left(100\right)=100+25=125\)
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
a, f(1) = 100 + 99 + ... + 2 + 1 + 1
=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"
=> f(x) = 4951
Hihi..
b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)
g(1) = 1 . 2016
g(1) = 2016
g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015
g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]
g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]
g(-1) = 1008 - 1008
g(-1) = 0
k nha!!
a. Ta có: f(0) = 02 - 4 = 0 - 4 = -4
f(2) = 22 - 4 = 4 - 4 = 0
f(-1) = (-1)2 - 4 = -1 - 4 = -5
b. Ngiệm của đa thức f(x) là 2 (vì f(2) = 0)
a) f(x) =\(^{x^2}\)-4
Thay x=o vào đa thức ta được
f(0)=\(0^2\)-4=-4
Thay x=2 vào đa thức ta được
f(2) =\(2^2\)-4=0
Thay x=-1 vào đa thức ta được
f(-1) =\(-1^2\)-4 =-3
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Lời giải:
$f(x)=99x+98x^2+97x^3+....+2x^{98}+x^{99}+1$
$f(-1)=-99+98-97+96-....+2-1+1$
$=-1+2-3+4+....-97+98-99+1$
$=(-1+2)+(-3+4)+...+(-97+98)-99+1$
$=1+1+...+1-99+1$
$=49-99+1=-49$