Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Ta có:
\(Q\left(x\right)=\left[x^{1010}\left(x+3\right)-1\right]^{2012}=\left[x^{1010}.0-1\right]^{2012}=\left(-1\right)^{2012}=1\)
Ta có: f(x) + h(x) = g(x)
Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)
= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1
= ( x4 – x4) – x3 + (x2 + 3x2 ) – x + (5+ 1)
= -x3 + 4x2 – x + 6
Ta có: f(x) – h(x) = g(x)
Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)
= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5
= (x4 – x4) + x3 – (3x2 + x2) + x - (1+ 5)
= x3 – 4x2 + x – 6
`a,f(x)-g(x)+h(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`
`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`
`=0+0+3x+1`
`=3x+1`
`b,f(x)-g(x)+h(x)=0`
`=>3x+1=0`
`=>x=-1/3`
c. Ta có f(x) + g(x)
=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1
Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1
Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)
b. Ta có f(x) + 2g(x)
= x3 - 2x2 + 2x- 5 + 2(-x3 + 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + (-2x3) + 6x2 - 4x + 8
=-x3 + 4x2 - 2x + 3 (0.5 điểm)
2f(x) - g(x) = x3 - 2x2 + 2x- 5 - 2(-x3+ 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + 2x3 - 6x2 + 4x - 8
= 3x3 - 8x2 + 6x - 13 (0.5 điểm)
\(f\left(x\right)=1+x+x^2+x^3+...+x^{2010}+x^{2011}\)
\(f\left(1\right)=1+1+1+1+....+1+1\)(2013 hạng tử)
\(f\left(1\right)=2013\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\)
\(f\left(-1\right)=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+....+\left[1+\left(-1\right)\right]+\left(-1\right)\)
\(f\left(-1\right)=-1\)
Nhầm :v làm lại
\(f\left(1\right)=1+1+1^2+1^3+....+1^{2010}+1^{2011}.\)(2012 số 1)
\(f\left(1\right)=1.2012=2012\)
\(f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+....+\left(-1\right)^{2010}+\left(-1\right)^{2011}\)
\(f\left(-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)(1006 cặp)
\(f\left(-1\right)=0\)