K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Đặt \(g\left(x\right)=32x-142\).

Ta có \(f\left(5\right)-g\left(5\right)=f\left(6\right)-g\left(6\right)=0\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right)\left(x-5\right)\left(x-6\right)\).

\(\Rightarrow f\left(11\right)=g\left(11\right)+Q\left(x\right).30=210+Q\left(x\right).30⋮30\).

 

28 tháng 2 2021

Mình làm theo kiểu khác để cho bạn rõ hơn:

Đặt \(g\left(x\right)=32x-142\Rightarrow\left\{{}\begin{matrix}g\left(5\right)=18\\g\left(6\right)=50\end{matrix}\right.\).

Đặt \(h\left(x\right)=f\left(x\right)-g\left(x\right)\). Khi đó \(h\left(5\right)=f\left(5\right)-g\left(5\right)=18-18=0;h\left(6\right)=f\left(6\right)=g\left(6\right)=50-50=0\).

Do \(h\left(5\right)=h\left(6\right)=0\) nên \(h\left(x\right)\) chia hết cho hai đa thức \(x-5\) và \(x-6\) (đoạn này mình mong bạn hiểu).

Từ đó tồn tại Q(x) sao cho \(h\left(x\right)=\left(x-5\right)\left(x-6\right)Q\left(x\right)\).

Suy ra \(f\left(x\right)=g\left(x\right)+h\left(x\right)=32x-142+\left(x-5\right)\left(x-6\right)Q\left(x\right)\Rightarrow f\left(11\right)=32.11-142+5.6.Q\left(x\right)=210+30.Q\left(6\right)\).

Do f(x) có các hệ số nguyên, g(x) có các hệ số nguyên nên h(x) cũng có các hệ số nguyên.

Do đó Q(x) cũng có các hệ số nguyên.

Suy ra \(f\left(6\right)=210+30.Q\left(x\right)⋮30\).

 

9 tháng 12 2021

TK: Toán 8 - đa thức, chia hết | Cộng đồng Học sinh Việt Nam - HOCMAI Forum

9 tháng 12 2021

bài trên mình sai á khocroi

28 tháng 12 2017

Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo câu tương tự tại đây nhé.

14 tháng 8 2020

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.