Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x)=ax2+bx+c
f(0)=a.02+b.0+c=0+0+c=1\(\Rightarrow\)c=1.
f(1)=a.12+b.1+c=a+b+c=-1 (1)
f(-1)=a.(-1)2+b.(-1)+c=a-b+c=5 (2)
Thay c=1 vào (1), ta có:
a+b+c=a+b+1=-1\(\Rightarrow\)a+b=-2
a-b+c=a-b+1=5\(\Rightarrow\)a-b=4
\(\Rightarrow\)(a+b)+(a-b)=2a=-2+4=2\(\Rightarrow\)a=1
a+b=1+b=-2\(\Rightarrow\)b=-3
Xét đa thức :
\(f\left(x\right)=ax^2+bx+c\)
Ta có :
+) \(f\left(0\right)=1\)
\(\Leftrightarrow a.0^2+b.0+c=1\)
\(\Leftrightarrow c=1\)
+) \(f\left(1\right)=-1\)
\(\Leftrightarrow a.1^2+b.1+c=-1\)
\(\Leftrightarrow a+b+c=-1\)
\(\Leftrightarrow a+b=-2\)
Vậy..
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^3+b\cdot0+c=2\\a+b+c=0\\-a-b+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2\\a+b=-2\\-a-b=4\end{matrix}\right.\Leftrightarrow\left(a,b,c\right)\in\varnothing\)