K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Đa thức f(x)=2x^2-8x+6

Thay x=1

f(x)=2.1^2-8.1+6

    =2.1-8.1+6

    =2-8+6=0

Vậy x=1 là nghiệm của đa thức f(x)

Thay x=3

f(x)=2.3^2-8.3+6

    =2.9-8.3+6

    =18-24+6=-6+6=0

Vậy x=3 là nghiệm của đa thức f(x)

 
 

25 tháng 4 2017

\(f\left(1\right)=2.1^2-8.1+6\)

\(f\left(1\right)=2-8+6\)

\(f\left(1\right)=0\)

Vậy x = 1 là nghiệm f(x)

\(f\left(3\right)=2.3^2-8.3+6\)

\(f\left(3\right)=18-24+6\)

\(f\left(3\right)=0\)

Vậy x = 3 là nghiệm f(x)

30 tháng 7 2021

a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)

b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)

\(=x^4+x^2+10\)

c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)

Vậy phương trình ko có nghiệm ( đpcm ) 

30 tháng 7 2021

Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé 

19 tháng 4 2019

Chọn C

Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2

Cho -7x - 2 = 0 ⇒ x = -2/7

a: \(F\left(x\right)=x^3+2x^2+3x+4\)

\(G\left(x\right)=x^3-x^2+3x+1\)

b: \(F\left(x\right)+G\left(x\right)=2x^3+x^2+6x+5\)

\(F\left(x\right)-G\left(x\right)=3x^2+3\)

10 tháng 5 2022

f(x)=x+2x2+3x+4

g(x)=xtrừ x2+3x+1

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM

9 tháng 4 2021

a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3

Nghiệm của đa thức là x = 3

b)1. P(1) = \(1^4+2.1^2+1\) = 4

P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)

Ta có: P(x) = \(\left(x^2+1\right)^2\)

Vì \(\left(x^2+1\right)^2\) ≥ 0 

Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)

Vậy P(x) không có nghiệm

a) Đặt A(x)=0

\(\Leftrightarrow6-2x=0\)

\(\Leftrightarrow2x=6\)

hay x=3

Vậy: x=3 là nghiệm của đa thức A(x)

3 tháng 4 2023

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)

\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)

Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1

b) Khi \(f\left(-1\right)\) thì đa thức trở thành:

\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)

\(f\left(-1\right)=2+4+-1+1+1\)

\(f\left(-1\right)=7\)

c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm

29 tháng 3 2018

Ta thay nghiệm x=-1 vào phương trình tổng quát được:

a(-1)2+b(-1) +c=0

=> a-b+c=0 hay a-b=-c  (đpcm)

Áp dụng: ta thấy: a=8 b=11 c=3, a-b+c= 8-11+3=0 

                             => phương trình có một nghiệm là x=-1 

<Mở rộng hơn nữa là phương trình dạng như trên có một nghiệm là -1 và nghiệm còn lại có dạng là -c/a>      

29 tháng 3 2018

thank bn nha!