Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=1
f(x)=1+1+1+1+....+1(52 số 1)
f(x)=52
thay x=-1
f(x)=(1+-1)+(1+-1)+(1+-1)+.........+(1+-1) (26 cặp)
=>f(x)=0
Thay x=1, ta có:
f(1)=1+1+1+1+.................+1+1 (có 52 số 1)
f(1)= 52
Thay x=-1, ta có:
f(-1)=(1-1)+(1-1)+.................+(1-1)
f(-1)=0+0+0+0+.................+0 (có 26 số 0)
f(-1)=0
- Đa thức \(f\left(x\right)\)có số hạng tử là:
\(\left[\left(51-1\right):1+1\right]+1=52\)( số hạng tử)
\(\Rightarrow f\left(1\right)=1+1+1^2+1^3+...+1^{51}\)
\(=1+1+1+1+...+1\)( có 52 số 1)
\(=52\)
\(\Rightarrow f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{51}\)
\(=1+\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)\)( có 25 số " -1 ")
= 0
Vậy f(1)=52 ; f(-1)=0
\(f\left(1\right)=1+1+1^2+...+1^{2013}=1.2014=2014\)
\(f\left(-1\right)=1-1+1-1+1-1+...+1-1=0+0+0+...+0=0\)
đúng nha
a) Ta có:
\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)
\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:
\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)
b) Bậc của đa thức f(x) là 5
c) Ta có:
\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.
\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
với f(x)=-1 ta có:
f(-1)=1+ -(1)^3 + (-1)^5 + ..........+ (-1)^101
=1+(-1)+(-1)+...+(-1)
=-49
với f(x)=2 ta có:
f(2)=2+2^3 + 2^5 + 2^7 + ..........+ 2^101
= tự tính