Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c\)
\(f\left(-1\right)=a-b+c\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=4a+2b+c+a-b+c\)
\(\Leftrightarrow f\left(2\right)+f\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=0\Leftrightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Leftrightarrow f\left(2\right).f\left(-1\right)=-f\left(-1\right).f\left(-1\right)\le0\)
\(\Rightarrowđpcm\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c=10a-10b-\left(6a-12b-c\right)=10a-10b\)
\(f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c=15a-15b-\left(6a-12b-c\right)=15a-15b\)
\(\Rightarrow f\left(2\right).f\left(-3\right)=\left(10a-10b\right).\left(15a-15b\right)=150\left(a-b\right)^2\)
Mà \(\left(a-b\right)^2\ge0;\forall a;b\Rightarrow150\left(a-b\right)^2\ge0\)
\(\Rightarrow f\left(2\right).f\left(-3\right)\ge0\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)
Mà \(13a+b+2c=0\) theo giả thiết.
\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)
\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)
Q(2)=a.22+b.2+c=a.4+b.2+c
Q(-1)=a.(-1)2+b.(-1)+c=a-b+c
Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0
Như vậy Q(2) và Q(-1) là 2 số đối nhau
=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)
b) Q(x)=0 với mọi x
=>Q(0)=a.02+b.0+c=0
=>0+0+c=0
=>c=0
Q(1)=a.12+b.1+c=a+b+c=0
Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)
=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0
=>2b=0
=>b=0
Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0
=>a=0
Vậy a=b=c=0
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(f\left(-5\right)=a.\left(-5\right)^2+b.\left(-5\right)+c=25a-5b+c\)
\(f\left(2\right)+f\left(5\right)=4a+2b+c+25a-5b+c=29a-3b+2c\)
\(=\left(29a+2c\right)-3b=3b-3b=0\)
\(\Leftrightarrow f\left(2\right)=-f\left(-5\right)\)
\(\Leftrightarrow f\left(2\right)f\left(-5\right)\le0\).
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)