K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(f(1)=f(-1)\)

\(\Leftrightarrow a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\)

\(\Leftrightarrow 2(a_3+a_1)=0\Leftrightarrow a_3+a_1=0(1)\)

\(f(2)=f(-2)\)

\(\Leftrightarrow 16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\)

\(\Leftrightarrow 16a_3+4a_1=0\Leftrightarrow 4a_3+a_1=0(2)\)

Từ \((1);(2)\Rightarrow a_3=a_1=0\)

Do đó:
\(f(x)=a_4x^4+a_2x^2+a_0\)

\(\Rightarrow f(-x)=a_4(-x)^4+a_2(-x)^2+a_0=a_4x^4+a_2x^2+a_0\)

Vậy $f(x)=f(-x)$.

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

Bài 2: 

x=13 nên x+1=14

\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)

\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)

=14-x=1

24 tháng 2 2022

x=13 nên x+1=14

f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14

=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14

=14-x=1

  
NV
18 tháng 3 2023

\(\left(x^2-25\right)f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\) (1)

Thay \(x=2\) vào (1) ta được:

\(-21.f\left(3\right)=0.f\left(1\right)=0\Rightarrow f\left(3\right)=0\)

\(\Rightarrow x=3\) là 1 nghiệm của \(f\left(x\right)\)

Thay \(x=5\) vào (1):

\(0.f\left(6\right)=3.f\left(4\right)\Rightarrow f\left(4\right)=0\)

\(\Rightarrow x=4\) là 1 nghiệm

Thay \(x=-5\) vào (1):

\(0.f\left(-4\right)=-7.f\left(-6\right)\Rightarrow f\left(-6\right)=0\)

\(\Rightarrow x=-6\) là 1 nghiệm

Vậy \(f\left(x\right)\) có ít nhất 3 nghiệm là \(x=\left\{3;4;-6\right\}\)

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

2 tháng 5 2019

(x-1) x f(x)=(x+2) x f(x+3)

Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)

            =>f(4)=0

Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)

           =>f(-2)=0

Thay x=4(thay bang 0 vi f(4)=0).....

Thay x=7 (ket qua o tren)

Thay x=10 kq o tren

 vay 5 nghiem la 1;2;4;7;10

mk chi tom tat thoi nha chuc bn hoc tot

7 tháng 7 2019

Ta có: Với 1=0 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Với x=-2 thì (-2-1).f(-2)=(-2+2).f(-2+3) hay (-3).f(-2)=0 do -3 khác 0 nên f(-2)=0 vậy -2 là 1 nghiệm của f(x)

Với x=4 ta có: (4-1).f(4)=(4+2).f(4+3) suy ra 0=6.f(7) (vì f(4)=0)

do 6 khác 0 nên f(7)=0 hay 7 là 1 nghiệm của f(x)

Với x=7 ta có: (7-1).f(7)=(7+2).f(7+3) suy ra 0=9.f(10) (vì f(7)=0)

do 9 khác 0 nên f(10) bằng 0 hay 10 là 1 nghiệm của f(x)

Với x=10 ta có: (10-1).f(10)=(10+2).f(10+3) suy ra 0=12.f(13) (vì f(10)=0)

do 12 khác 0 nên f(13)=0 hay 13 là 1 nghiệm của f(x)

Vậy 5 nghiệm của f(x) tìm được là: -2;4;7;10;13

7 tháng 7 2019

Không chứng minh tương tự được hả bạn???

Tại sao lại với 1=0?