K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

Ta có : f ( x ) = ax^2 + bx + c 

Xét f ( 0 ) = a . 0^2 + b . 0 + c = 2018

           => c = 2018

Xét f ( 1 ) = a . 1^2 + b . 1 + c = 2019

          => a + b + c = 2019

         = > a + b = 1 [ do c = 2018 theo trên rồi nhá ] ( 1 )

Xét f ( - 1 ) = a . ( -1 ) ^2 + b . ( -1 ) + c

        => a - b + c = 2017

       => a - b = -1         ( 2 )

Cộng ( 1 ) và ( 2 ) vế theo vế , ta được

     a + b + a - b = 1 + ( - 1 )

 = > 2. a = 0

= > a = 0

   Trừ ( 1 ) và ( 2 ) vế theo vế ta được 

               a + b - a + b = 1 - ( - 1 ) 

             => 2 . b = 2

             = > b = 1

Do đó : xét f ( - 2019 ) = a . ( - 2019 )^2 + b . ( - 2019 ) + c

                              => 0 - 2019 + 2018

                              = - 1

Vậy f ( - 2019 ) = -1 

[ nếu gặp các dạng bài này bạn cứ thay vào đa thức ban đầu rồi biến đổi tìm ra a , b , c nha ]

18 tháng 4 2021

có thừa x ở cx ko ạ

11 tháng 5 2021

Ta có :

f(0) = a.0^2 + b.0 + c = 2018 => c = 2018

f(1) = a + b + c = 2019 => a + b = 1

f(-1) = a - b + c = 2020 => a - b = 2

Suy ra : a = 1,5 ; b = = - 0,5

Vậy : f(x) = 1,5x^2 - 0,5x + 2018

Suy ra: f(2) = 1,5.2^2 - 0,5.2 + 2018 = 2023

Sai đề không bạn???

             

Theo đề bài f(0)= 2017 => c= 2017

         f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)

         f(-1)= 2019 => a - b + c= 2019 => a - b= 2  (2)

Cộng theo vế của (1) và (2), ta được

2a = 3  => a = 3/2

=>b=  -1/2

Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021

Vậy f(2)= 2021

Y
6 tháng 5 2019

\(\left\{{}\begin{matrix}f\left(0\right)=2017\\f\left(1\right)=2018\\f\left(-1\right)=2019\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=2017\\a+b+c=2018\\a-b+c=2019\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=2\\c=2017\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-\frac{1}{2}\\c=2017\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)=\frac{3}{2}\cdot2^2-\frac{1}{2}\cdot2+2017\)

\(\Rightarrow f\left(2\right)=6-1+2017=2022\)

17 tháng 5 2020

Cho mk hỏi sao a lại=\(\frac{3}{2}\);b=\(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

$f(1)=a+b+c=6$

$f(2)=4a+2b+c=16$

$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$

$=63a+21b=21(3a+b)$

$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$

30 tháng 5 2020

Em cảm ơn cj

13 tháng 5 2022

\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)

\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)

\(\Rightarrowđpcm\)

19 tháng 6 2020

Ta có:

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(4\right)=64a+16b+4c+d\)

\(f\left(7\right)=343a+49b+7c+d\)

\(f\left(2\right)=8a+4b+2c+d\)

Xét:

\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)

\(=61a+9b+c=2019\)

Khi đó:

\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)

Vậy ta có đpcm

14 tháng 12 2021

phải là 30a chứ bạn