K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

\(\text{∆}'=3^2-2.2020\)

\(=-4031< 0\)

⇒ phương trình vô nghiệm

8 tháng 5 2022

Vì 2x^2-6x > 0 với mọi x

=> 2x^2-6x+2020 > 0+2020 với mọi x

=> 2x^2-6x+2020 > 2020 với mọi x

=> A(x) > 0 ( khác 0 )

=> A(x) vô nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

27 tháng 5 2022

( x2+1/2)2 +3/4 > 0

vậy làm gì có x cho đa thức = 0

VÔ NGHIỆM

29 tháng 5 2022

x≥0 với mọi x 

x≥0 với mọi x 

⇒ x4+ x2 ≥ 0 

 x4 +x2 +1>1

⇒Đa thức trên vô nghiệm

 

 

 

 

 

 

 

 

 

 

.

26 tháng 4 2018

                   cho h(x) = 0 

            \(\Rightarrow\) \(2x^4+x^2+1=0\) 

                      \(2x^4+x^2=-1\)

            ta có \(x^2\)\(\ge\)0

                   mà   \(2x^4+x^2\)< 0 

\(\Rightarrow\)đa thức h(x) k có nghiệm

26 tháng 4 2018

Vì \(2x^4\ge0\) với \(\forall\)x

    \(x^2\ge0\) với \(\forall\) x

\(\Rightarrow2x^4+x^2+1\ge1>0\)

Vậy đa thức H(x) vô nghiệm

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

30 tháng 3 2023

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN