K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)

\(B\left(x\right)=2x^4-5x^3-x+9\)

\(C\left(x\right)=x^4+4x^2+5\)

A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2

B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9

b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7

N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11

c: Q(x)=-N(x)=4x^3+3x^2+10x-11

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)

`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`

`= 3x^5 - 4x^2 - 7x + 2`

`b)`

`A(x)+B(x)`

`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)

`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`

`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`

`= -4x - 5`

`b)`

`A(x) - B(x)`

`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`

`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`

`= 6x^5 - 8x^2 - 10x + 9`

`c)`

Thay `x=-1` vào đa thức `A(x)`

` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`

`= 3*(-1) - 4*1 + 7 + 2`

`= -3 - 4 + 7 + 2`

`= -7+7 + 2`

`= 2`

Bạn xem lại đề ;-;.

`2,`

`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)

`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`

`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`

`= 6x^2 - x - 2 - (6x^2 - x - 1)`

`= 6x^2 - x - 2 - 6x^2 + x + 1`

`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`

`= -1`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

2:

M=6x^2+3x-4x-2-6x^2+3x-2x+1

=-1

1;

a: A(x)=3x^5-4x^2-7x+2

b: B(x)=-3x^5+4x^2+3x-7

B(x)+A(x)

=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7

=-4x-5

A(x)-B(x)

=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7

=-6x^5-8x^2-10x+9

 

14 tháng 2 2022

P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5

P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5

P(x) = 2 + 9x2 – 4x3– 2x + 6x5

Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có

P(x) = 6x5 – 4x3 + 9x2 – 2x + 2

24 tháng 6 2023

Hệ số cao nhất là 7 bạn nhé !

24 tháng 6 2023

Mình đag cần gấp giúp mình zớii ạ ><

Ta có: \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=9x^4+2x^2-x+5\)

Ta có: \(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2-3x-1\)

\(=-x^4-x^3-2x^2-2x-1\)

Ta có: P(x)+Q(x)

\(=9x^4+2x^2-x+5-x^4-x^3-2x^2-2x-1\)

\(=8x^4-x^3-3x+4\)

Ta có: P(x)-Q(x)

\(=9x^4+2x^2-x+5+x^4+x^3+2x^2+2x+1\)

\(=10x^4+x^3+4x^2+x+6\)

a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)

\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)

\(=x^2-2x+3\)

b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)

c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)

\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

1 tháng 8 2016

a) P(x) = – x6 – x4 – 4x3 + 3x2+ 5

Q(x) = 2x5 – x4 – x3 + x – 1

b) P(x) + Q(x) = – x6 + 2x5– 2x4 – 5x3 + 3x2+ x + 4

P(x) – Q(x) = – x6 – 2x5 – 3x3 + 3x2– x + 6

1 tháng 8 2016

Thank you so much !!!leuleu

25 tháng 8 2016

1. Ta có:

 \(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)

Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)

2. Hoàn toàn tương tự.

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15