Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng phương pháp xét giá trị riêng vào bài toán
Ta có:\(A=ax^2+bx+c=\left(x-1\right).Q\left(x\right)+r\)
\(=\left(x+1\right).P\left(x\right)+r\)
Do đẳng thức đúng với mọi x nên lần lượt đặt \(x=1;x=-1\)
\(\Rightarrow a.1^2+b.1+c=\left(1-1\right).Q\left(x\right)+r\)hay \(a+b+c=r\)
Tương tự khi x = -1 thì \(a-b+c=r\)
\(\Rightarrow a+b+c=a-b+c\Rightarrow2b=0\Rightarrow b=0\)
Câu hỏi của Vinh Lê Thành - Toán lớp 8 - Học toán với OnlineMath Bạn tham khảo nhé!
Gọi r là số dư
Ta có: A(x)=B(x).(x+1)+r
A(x)=C(x).(x-1)+r
=> A(1)=a+b+c=C(x).0+r=> a+b+c=r (1)
A(-1)=a-b+c =B(x).0+r=> a-b+c=r (2)
lẤY (1)-(2) ta có: 2b=0=> b=0
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)
Câu hỏi của Vinh Lê Thành - Toán lớp 8 - Học toán với OnlineMath. Bạn tham khảo!
Gọi số dư của A khi chia cho (x-1) và (x+1) là d
Ta có :
A chia (x-1) dư d
=>A(1)=d
=>a+b+c=d(*)
A chia (x+1) dư d
=>A(-1)=d
=>a-b+c=d(**)
Từ (*) và (**) ta có :
a+b+c = (a-b+c)
=>b = -b
=>b-(-b) = 0
2b=0
b=0
Vậy b=0