K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)

\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)

\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)

b) để A+B=0 => B là số đối của A 

\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)

c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)

\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)

\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)

\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)

25 tháng 4 2022

\(A=5x^2y-xy^2+4xy+6\)             bậc : 3

a)\(B=-5x^2y+xy^2-4xy-6\)

b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)

\(C=-5x^2y+xy^2-6xy-5\)

25 tháng 4 2022

cảm ơn bn

31 tháng 7 2018

a. A = \(5xy^2+xy-xy-\dfrac{1}{3}x^2y+2xy+x^2y+xy+6\)

=> A = \(5xy^2-\dfrac{1}{3}x^2y+x^2y+xy-xy+xy+2xy+6\)

=> A = \(5xy^2-\dfrac{2}{3}x^2y+3xy+6\)

=> Bậc của đa thức A là : 3

\(A=-2xy^2+xy^2+\dfrac{1}{3}x^3y-\dfrac{1}{3}x^3y-x+x-4x^2y=-xy^2-4x^2y\)

bậc là 3

3 tháng 3 2022

Anh có thể giải kĩ hơn một chút được ko ạ?

Bài làm

\(A=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)

\(A=-xy^2-4x^2y\)

Bậc của đa thức là: 3

17 tháng 3 2019

a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)

\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)

\(B=1x^4y^5\)

Hệ số: 1

Bậc: 9

Chưa định hình phần b) nó là như nào

a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)

\(=x^6-x^5-2x^2-x+3\)

Bậc là 6

b) Thay x=-1 và y=2018 vào A, ta được:

\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)

\(=1-\left(-1\right)-2\cdot1+1+3\)

\(=1+1-2+1+3\)

=4