K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Chọn D

Lời giải. Số tam giác tạo thành có 3 đỉnh là 3 đỉnh của đa giác là  C n 3

Số tam giác tạo thành có đúng 2 cạnh là cạnh của đa giác là n

Số tam giác tạo thành có đúng 1 cạnh là cạnh của đa giác là n(n-4)

(điều kiện n ∈ ℕ   v à   n < 4 )

→ số tam giác tạo thành không có cạnh nào là cạnh của đa giác là

Theo giả thiết, ta có

⇔ n = 35 ( t h ỏ a   m ã n ) n = 4 ( l o ạ i )

NV
2 tháng 12 2021

Chọn 2 đỉnh liền kề của đa giác: có n cách chọn

Chọn 1 đỉnh còn lại ko kề với 2 đỉnh đã chọn :n-4 cách

\(\Rightarrow n\left(n-4\right)\) tam giác có đúng 1 cạnh là cạnh của đa giác

\(n\left(n-4\right)=165\Rightarrow n=15\)

NV
4 tháng 8 2021

a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh

Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)

\(\Rightarrow\) Có \(C_n^2-n\) đường chéo

b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)

c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề

\(\Rightarrow\) có n tam giác thỏa mãn

d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên

\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn

e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\) 

13 tháng 5 2018

Đáp án D

Ta đánh số các đỉnh của đa giác từ 1 đến 15, gọi 4 đỉnh của tứ giác là a, b, c, d (theo thứ tự).

Ta xét 2 trường hợp sau:

Trường hợp 1: a = 1. Vì không thể là cạnh kề đa giác nên không thể có 2 cạnh kề nhau. Nên

Trường hợp 2: a > 1. Tương tự:

Từ (1) và (2) ta có tổng số tứ giác thỏa mãn: C 10 3   +   C 11 4   =   450 .

Tổng quát: Đa giác có n đỉnh số tứ giác lập thành từ 4 đỉnh

Không có cạnh của đa giác là: n 4 . C n - 5 3 .

6 tháng 7 2019


6 tháng 8 2019

Chọn B

 Lấy ba điểm phân biệt không thẳng hàng sẽ tạo thành một tam giác nên số tam giác tạo thành là:

  

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm