Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)
vậy C (-2y -1 ; y ).
tam giác ABC cân tại C khi và chỉ khi
CA = CB \(\Leftrightarrow\) CA2 = CB2
\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2
\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2
giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)
vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)
b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :
\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2
\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17
\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)
vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)
a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)
Phương trình đường tròn:
\(\left(x-3\right)^2+\left(y-6\right)^2=25\)
b.
\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(x-y+c=0\)
Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)
\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)
\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)
\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)
Ta có B(a;2-a) ; C(b;8-b)
Để tam giác ABC vuông cân tại A
\(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{AB}=\overrightarrow{0}\\\overrightarrow{AC}=\overrightarrow{AB}\end{matrix}\right.\) bạn thay vào giải hpt bằng p2 thế nhé
a: Δ//d
=>Δ: 2x-y+c=0
Thay x=1 và y=-2 vào Δ, ta được:
c+2+2=0
=>c=-4
b: B thuộc d nên B(x;2x+3)
M(1;-2); A(0;3)
\(\overrightarrow{MA}=\left(-1;5\right);\overrightarrow{MB}=\left(x-1;2x+5\right)\)
ΔBAM vuông tại M
=>-1(x-1)+5(2x+5)=0
=>-x+1+10x+25=0
=>9x=-26
=>x=-26/9
=>B(-26/9;-25/9)
\(\overrightarrow{BC}=\left(-6;-2\right)=-2\left(3;1\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(1;4\right)\)
Phương trình trung trực BC: \(3\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow3x+y-7=0\)
Tam giác IBC cân tại I nên I nằm trên trung trực BC
\(\Rightarrow\) Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}x+2y-4=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(2;1\right)\)
I thuộc (d) ⇒ Tham số hóa tọa độ \(I\left(x;\dfrac{4-x}{2}\right)\)
⇒ \(IB^2=\left(x-4\right)^2+\left(\dfrac{4-x}{2}-5\right)^2\)
và \(IC^2=\left(x+2\right)^2+\left(\dfrac{4-x}{2}-3\right)^2\)
Tam giác cân nên là IB2 = IC2, giải ra tìm x
Do I thuộc d nên tọa độ có dạng: \(I\left(1+t;2+t\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(1+t;t+5\right)\\\overrightarrow{OI}=\left(1+t;2+t\right)\end{matrix}\right.\)
Do tam giác AIO vuông tại I nên \(AI\perp OI\)
\(\Rightarrow\overrightarrow{AI}.\overrightarrow{OI}=0\)
\(\Rightarrow\left(1+t\right)^2+\left(t+2\right)\left(t+5\right)^2=0\)
\(\Leftrightarrow2t^2+9t+11=0\)
Pt trên vô nghiệm nên ko tồn tại điểm I thỏa mãn yêu cầu đề bài