K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

a) Xét ΔAMD và ΔCMB có:

       AM=MC(gt)

      \(\widehat{AMB}=\widehat{CMB}\) (đối đỉnh)

      DM=MB(gt)

=> ΔAMD=ΔCMB(c.g.c)

b)Ví ΔAMD = ΔCMB(cmt)

=> \(\widehat{ADM}=\widehat{CBM}\) . Mà hai góc này ở vị trí soletrong

=> AD//BC

c, Xét ΔANE và ΔBNC có:

           EN=NC(gt)

     \(\widehat{ANE}=\widehat{BNC}\) (đối đỉnh)

          AN=BN(gt)

=>ΔANE=ΔBNC(c.g.c)

=>AE=BC                                      (1)

Mà ΔAMD=ΔCMB(cmt)

=>AD=BC                                    (2)

Từ (1)(2) suy ra: AE=AD

=>E là trung điểm của DE

 

13 tháng 8 2016

a/ Xét tam giác AMD và tam giác CMB có:

\(\begin{cases}gcAMD=gcCMB\\AM=MC\\DM=BM\end{cases}\)

=> AMD=CMB

b/

Vì tam giác AMD = tam giác CMD nên góc ADM = góc MBC hay ADB=DBC

Mà vị trí 2 góc trên là so le trong nên AD//BC (ĐPCM)

c/

Xét tam giác ENA và CNB có:

\(\begin{cases}AN=BN\\gcENA=gcCNB\\EN=CN\end{cases}\)

=> tam giác ENA = tam giác CNB

=> EA = BC (1)

Mà tam giác AMD= tam giác CMB nên AD = BC (2)

Từ (1) và(2) ta được : EA=AD 

Hay A là trung điểm của ED. (ĐPCM)

 

 

8 tháng 7 2018

chữ thấy ghê

b: Xét tứ giác AEBC có

N là trung điểm của BA

N là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE//BC

3 tháng 12 2021

còn câu A vs B nữa 

a: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

a: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

9 tháng 1 2018

a) xét tam giác AMD và tam giác CMB có :

AM = CM ( vì Mlaf trung điểm của AC)

\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)

MD = MB (gt)

=> tam giác AMD = tam giác CMB (c-g-c)

xét tam giác ANE và tam giác BNC có :

AN = BN ( vì N là trung điểm của AB)

\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)

NE = CN (gt)

=> tam giác ANE = tam giác BNC (c-g-c)

b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)

vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)

từ (1), (2) => AD = AE (đpcm)

c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)

mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong

do đó AD // BC (3)

Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)

mà \(\widehat{NAE}\)và  \(\widehat{NBC}\) ở vị trí so le trong

do đó AE // BC (4)

từ (3), (4) => A, E, D thẳng hàng (đpcm) 

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI

24 tháng 6 2017

(Bạn tự vẽ hình)

Ta có: \(\Delta\)BMC=\(\Delta\)EMA (c.g.c) => BC=EA (2 cạnh tương ứng); ^AEM==^CBM => AE//BC (1)

           \(\Delta\)BNC=\(\Delta\)AND (c.g.c) => BC=AD (2 cạnh tương ứng); ^ADN=^BCN => AD//BC (2)

Từ (1) và (2) \(\Rightarrow\)EA=AD; D;A;E thẳng hàng => A là trung điểm của DE (đpcm)  

10 tháng 8 2019

=> BMC =EMC(c.g.c) <=> BC =EA (2 cạnh tương ứng) ^ AEM = ^CBM => AE/BC (1)

BNC = AND (c.g.c) <=> BC = AD (2 cạnh tương ứng) ^ADN =^BCN => AD//BC (2)

Qua (1) (2) EA =AD ; D;E;A  thẳg hàng