Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: cos 70 0 (= sin 20 0 ) < sin 24 0 < sin 54 0 < cos 35 0 (= sin 55 0 ) < sin 78 0
b, Ta có: tan 16 0 (= cot 74 0 ) < cot 57 0 67 ' < cot 30 0 < cot 24 0 < tan 80 0 (= cot 10 0 )
a, Ta có: cos 88 0 < sin 40 0 (= cos 50 0 ) < cos 28 0 < sin 65 0 (= cos 25 0 ) < cos 20 0
b, Ta có: cot 67 0 18 ' (= tan 22 0 42 ' ) < tan 32 0 48 ' < tan 56 0 32 ' < cot 28 0 36 ' (= tan 61 0 24 ' )
a, Ta có: cot 71 0 (= tan 19 0 ) < cot 69 0 15 ' (= tan 20 0 45 ' ) < tan 28 0 < tan 38 0 <tan 42 0
b, Tương tự câu a) ta có : cos 79 0 13 ' = sin 10 0 47 ' < sin 32 0 < sin 38 0 < cos 51 0 = sin 39 0
1) \(\cot51^0=\tan39^0\)
\(\cot79^015'=\tan10^045'\)
Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)
2) \(\cos62^0=\sin28^0\)
\(\cos63^041'=\sin26^019'\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)
cos20,sin65,cos28,sin40,cos88
Giải thích các bước giải:
đổi sin40=cos(90-40)=cos50
sin65=cos(90-65)=cos25
\(cot =5,8=\dfrac{29}{5}=\dfrac{k}{đ}\)
\(=>tan =\dfrac{đ}{k}=dfrac{5}{29}\)
Ta có: \(đ^2+k^2=h^2\)
\(=>5^2+29^2=h^2=>h=\sqrt{866}\)
Có: \(sin=\dfrac{đ}{h}=\dfrac{5}{\sqrt{866}}\)
\(cos =\dfrac{k}{h}=\dfrac{29}{\sqrt{866}}\)
Sửa dòg `2` thành \(tan =\dfrac{đ}{k}=\dfrac{5}{29}\)