K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

\(C=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)+\sqrt{a}\left(\sqrt{a}+3\right)-\left(3a+3\right)}{a-9}:\frac{2\sqrt{a}-2-\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\)

\(C=\frac{2a-6\sqrt{a}+a+3\sqrt{a}-3a-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{2\sqrt{a}-2-\sqrt{a}+3}\)

\(C=\frac{-3\sqrt{a}-3}{\sqrt{a}+3}.\frac{1}{\sqrt{a}+1}\)

\(C=\frac{-3}{\sqrt{a}+3}\)

Thay a = \(21-12\sqrt{3}\) vào C , ta có

\(C=\frac{-3}{\sqrt{21-12\sqrt{3}}+3}\)

\(C=\frac{-3}{\sqrt{\left(2\sqrt{3}-3\right)^2}+3}\)

\(C=\frac{-3}{2\sqrt{3}-3+3}=\frac{-3}{2\sqrt{3}}=\frac{-\sqrt{3}}{2}\)

16 tháng 10 2018

câu C đâu ạ

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

22 tháng 7 2019

ĐKXĐ:

\(\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ne3\\a\ne9\\\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne9\\\sqrt{a}+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne9\end{matrix}\right.\)

a,

\(Q=\left(\frac{2\sqrt{a}}{\sqrt{a}+3}-\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3a+3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\right)\)

\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)-\sqrt{a}\left(\sqrt{a}+3\right)-3a-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}:\frac{2\sqrt{a}-2-\sqrt{a}+3}{\sqrt{a}-3}\)

\(=\frac{2a-6\sqrt{a}-a-3\sqrt{a}-3a-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\frac{\sqrt{a}-3}{\sqrt{a}+1}\)

\(=\frac{-2a-9\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}=\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}\)

b,

\(Q< -\frac{1}{2}\Leftrightarrow\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}< -\frac{1}{2}\)

\(\Leftrightarrow\frac{2a+9\sqrt{a}+3}{a+4\sqrt{a}+3}>\frac{1}{2}\)

\(\Leftrightarrow4a+18\sqrt{a}+6>a+4\sqrt{a}+3\)

\(\Leftrightarrow3a+14\sqrt{a}+3>0\)

Vậy với mọi thỏa ĐKXĐ thì \(Q< -\frac{1}{2}\)

c,

\(Q=\frac{-2a-9\sqrt{a}-3}{a+4\sqrt{a}+3}=-\frac{\left(a+4\sqrt{a}+3\right)+a+5\sqrt{a}}{a+4\sqrt{a}+3}=-1-\frac{a+5\sqrt{a}}{a+4\sqrt{a}+3}\)

mình nghx đề có vấn đề, số xấu quá

23 tháng 7 2019

mk sửa đề lại xíu nha

\(Q=\left(\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}}{\sqrt{a}-3}-\frac{3a+3}{a-9}\right):\left(\frac{2\sqrt{a}-2}{\sqrt{a}-3}-1\right)\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

14 tháng 7 2016

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

14 tháng 7 2016

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)