Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Gọi q là công bội của cấp số. Khi đó ta có
u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11
⇔ u 2 + u 3 + u 4 = 39 11 u 1 + u 5 = 82 11 ⇔ u 1 q + q 2 + q 3 = 39 11 u 1 1 + q 4 = 82 11
Suy ra:
q 4 + 1 q 3 + q 2 + q = 82 39 ⇔ 39 q 4 − 82 q 3 − 82 q 2 − 82 q + 39 = 0
⇔ ( 3 q − 1 ) ( q − 3 ) ( 13 q 2 + 16 q + 13 ) = 0 ⇔ q = 1 3 , q = 3
q = 1 3 ⇒ u 1 = 81 11 ⇒ u n = 81 11 . 1 3 n − 1
q = 3 ⇒ u 1 = 1 11 ⇒ u n = 3 n − 1 11
Chọn C.
Công thức tổng quát của CSN có số hạng đầu là u1 và công bội q
u n = u 1 . q n - 1
Cách giải:
Gọi số hạng đầu và công bội của CSN lần lượt là u 1 , q
Theo đề bài ta có hệ phương trình:
Lây (2) chia cho (1) ta được:
Ta có: u3 = u1.q2 ; u5 = u1.q5.
Theo đề bài, ta có hệ phương trình :
+ Với q = 3 ta có cấp số nhân : 1/3 ; 1 ; 3 ; 9 ; 27.
+ Với q = -3 ta có cấp số nhân : 1/3 ; -1 ; 3 ; -9 ; 27.
Ta có : u3 = u1 + 2d ;
u5 = u1 + 4d ;
u6 = u1 + 5d
Theo đề bài ta có :
Đáp án D
u 5 = 18 ⇔ u 1 + 4 d = 18 ( 1 )
4 S n = S 2 n
⇒ 2 u 1 - d = 0 ( 2 )
Từ (1) & (2) ta có u 1 = 2 ; d = 2
Chọn đáp án A
Ta có: u 5 = 18 ⇔ u 1 + 4 d = 18 ( 1 )
Với n = 5 n ê n 4 S 5 = S 10
⇔ 2 u 1 - d = 0
Khi đó ta có hệ phương trình
Gọi số hạng đầu và công sai lần lượt là \(u_1\) và \(d\)
\(\left\{{}\begin{matrix}u_3+u_5=5\\u_3u_5=6\end{matrix}\right.\)
Theo định lý Viet đảo, \(u_3\) và \(u_5\) là nghiệm của pt:
\(x^2-5x+6=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}u_3=2\\u_5=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=2\\u_1+4d=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=\frac{1}{2}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}u_3=3\\u_5=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=3\\u_1+4d=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=4\\d=-\frac{1}{2}\end{matrix}\right.\)