Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: B\A=(-1;4]
\(C_R^B=R\text{\B}=(-\infty;-1]\cup\left(6;+\infty\right)\)
b: C=(-2;4]
D={0}
\(C\cap D=(-2;4]\)
\(\dfrac{2x}{x^2+1}\ge1\Leftrightarrow2x\ge x^2+1\Leftrightarrow x^2-2x+1\le0\\ \Leftrightarrow\left(x-1\right)^2\le0\)
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\left\{1\right\}\)
Để \(x^2-2bx+4=0\Leftrightarrow\Delta=4b^2-4\cdot4< 0\)
\(\Leftrightarrow b^2-4< 0\Leftrightarrow\left(b-2\right)\left(b+2\right)< 0\\ \Leftrightarrow x\le-2;x\ge2\)
\(\Leftrightarrow B=\left\{x\in R|x\le-2;x\ge2\right\}\)
Vậy \(A\cap B=\varnothing\)
\(2x< 3\Rightarrow x< \frac{3}{2}\)
\(\Rightarrow A=\left(-\infty;\frac{3}{2}\right)\)
\(-3x< \sqrt{6}\Rightarrow x>-\frac{\sqrt{6}}{3}\)
\(\Rightarrow B=\left(-\frac{\sqrt{6}}{3};+\infty\right)\)
\(A\cup B=R\)
\(A\backslash B=(-\infty;-\frac{\sqrt{6}}{3}]\)
\(C_R^{A\cup B}=\varnothing\)
\(C_R^{A\backslash B}=B\)
\(A\cap B=\left(-\frac{\sqrt{6}}{3};\frac{3}{2}\right)\) có 2 số nguyên (0 và 1)
Cảm ơn bạn 🙂