Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19 ban a nhung cach lam thi van chua ro.ai biet cach lam bao mk voi
ap dung bunhiacopki
\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)
do do P>=4+2013=2017
= xảy ra <=>x=y=1
\(A=8\left(x^4+y^4\right)+\frac{1}{4xy}+\frac{1}{4xy}+\frac{1}{2xy}\ge8\left(x^4+y^4\right)+\frac{1}{2\left(x^2+y^2\right)}+\frac{1}{2\left(x^2+y^2\right)}+\frac{1}{2xy}\)
\(\Rightarrow A\ge8\left(x^4+y^4\right)+\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}+\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}+\frac{1}{2\left(\frac{x+y}{2}\right)^2}\)
\(\Rightarrow A\ge3\sqrt[3]{8\left(x^4+y^4\right)\cdot\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}\cdot\frac{1}{2\sqrt{2\left(x^4+y^4\right)}}}+\frac{1}{2\cdot\frac{1}{4}}=3+2=5\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
X^8+x^4y^4+y^8=8
hay (x^4+y^4)^2-x^4y^4=8
hay (x^4+y^4+x^2y^2)(x^4+y^4-x^2y^2)=8
mà x^4+x^2y^2+y^4-4=0 nên x^4+y^3-x^2y^2=2
biết tổng hiệu tìm được x,y thôi/