K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)

Ta có : 

\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)

\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)

\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)

Do đó \(x+y+z=a+b+c+3\ge5\)

Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)

Chúc bạn học tốt !!!

28 tháng 12 2019

Bớt copppy đưa link tử tế cái :)))):

Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...

Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net

Search mạng đầy vler :333

24 tháng 5 2020

Lời giải:

Đặt \((x,y,z)=(a+1,b+1,c+1)⇒a,b,c≥0\)

Ta có:

\(3x^2+4y^2+5z^2=52\)

\(⇔3(a+1)^2+4(b+1)^2+5(c+1)^2=52\)

\(⇔3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(⇔5(a+b+c)^2+10(a+b+c)=40+2a^2+b^2+10(ab+bc+ac)+4a+2b\)

Do đó \(x+y+z=a+b+c+3≥5\)

Vậy Fmin\(=5⇔x=y=1,z=3\)

26 tháng 7 2017

Từ giả thiết suy ra

\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\)    (1)

Lại có  \(3x^2+4y^2+5z^2=52\)    

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)

\(\Rightarrow x^2+y^2+z^2\ge11\)   (2)

Từ (1) và (2) ta có  \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)

\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)

\(\Leftrightarrow P^2-4P-5\ge0\)

\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)

\(\Rightarrow P\ge5\)

Vậy  \(P_{min}=5\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)

phải là tìm max chứ

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)