Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)
=> đpcm
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
ta có :xz+yz+xt+yt+xy=-88
xét A-352 = A -4.88 = A+ 4(xz+yz+xt+yt+xy) = x2+9y2+6z2+24t2 +4(xz+yz+xt+yt+xy) =
(x+2y+2z+2t)2 +2(z-2t-y)2 + 3(2t - y)2 \(\ge0< =>A\ge352\)
dấu '=" khi \(\hept{\begin{cases}x+2y+2z+2t=0\\z-2t-y=0\\2t-y=0\end{cases}}\)\(< =>\hept{\begin{cases}x=-14t\\z=4t\\y=2t\end{cases}}\)và (-14t+2t)(4t+t) + (-14t).2t+88=0 =>
t=1; x=-14; y= 2; z= 4 là một bộ số thỏa mãn