Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)
ta có \(\frac{1}{x^2+x}+\frac{x^2+x}{4}>=2\cdot\sqrt{\frac{1\cdot\left(x^2+x\right)}{\left(x^2+x\right)\cdot4}}=1\)
tương tự => \(\frac{1}{y^2+y}+\frac{y^2+y}{4}>=1;\frac{1}{z^2+z}+\frac{z^2+z}{4}>=1\)
=> VT >= 3-(\(\frac{x^2+x}{4}+\frac{y^2+y}{4}+\frac{z^2+z}{4}\))=3-\(\frac{x^2+y^2+z^2+3}{4}\)
mà \(\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}>=\frac{\left(x+y+z\right)^2}{4+4+4}=\frac{3}{4}\)
=> P>= 3-3/4-3/4=3/2
Dấu bằng khi x=y=z=1
Bài bạn Lương Ngọc Anh bị ngược dấu nên sai hoàn toàn. Lời giải:
Ta có:
\(\frac{1}{x^2+x}=\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Tương tự, ta được:
\(VT=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\le\frac{1}{4}\left(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Do đó:
\(VT\ge\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{3}{4}\left(1\right)\)
Mặt khác:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\left(2\right)\)
TỪ (1) VÀ (2) TA CÓ ĐIỀU PHẢI CHỨNG MINH.
\(taco:\)
\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)
\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)
\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)
^^
Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)
Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:
\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)
Suy ra \(VT\ge VP\).Vậy (1) đúng.
Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:
\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{xz}+\frac{1}{yz}\ge\frac{\left(1+1\right)^2}{xz+yz}=\frac{4}{z\left(x+y\right)}\)(1)
Áp dụng bất đẳng thức AM-GM ta có :
\(z\left(x+y\right)\le\frac{\left(x+y+z\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{\frac{1}{4}}=16\)(2)
Từ (1) và (2) => \(\frac{1}{xz}+\frac{1}{yz}\ge\frac{4}{z\left(x+y\right)}\ge16\)=> \(\frac{1}{xz}+\frac{1}{yz}\ge16\)( đpcm )
Dấu "=" xảy ra <=> x = y = 1/4 ; z = 1/2
Lời giải:
Để cho đẹp, đổi \((xy,yz,xz)\mapsto (a,b,c)\) suy ra \(a+b+c=1\)
BĐT cần chứng minh tương đương với :
\(A=\frac{1}{a+b+c+a+\frac{bc}{a}}+\frac{1}{a+b+c+b+\frac{ac}{b}}+\frac{1}{a+b+c+c+\frac{ab}{c}}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\frac{a}{2a^2+ab+bc+ac}+\frac{b}{2b^2+ab+bc+ac}+\frac{c}{2c^2+ab+bc+ac}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\sum \frac{a(ab+bc+ca)}{2a^2+ab+bc+ac}\leq \frac{9(ab+bc+ac)}{5}\)
Để ý rằng \(A=\sum \left ( a-\frac{2a^3}{2a^2+ab+bc+ac} \right )=1-\sum \frac{2a^3}{2a^2+ab+bc+ac}\)
Cauchy-Schwarz:
\(\sum \frac{2a^3}{2a^2+ab+bc+ac}=\sum \frac{2a^4}{2a^3+a^2b+abc+a^2c}\geq \frac{2(a^2+b^2+c^2)^2}{2(a^3+b^3+c^3)+ab(a+b)+bc(b+c)+ca(a+c)+3abc}\)
Giờ đặt \(ab+bc+ac=q,abc=r\)
Phân tích:
\(2(a^3+b^3+c^3)+\sum ab(a+b)+3abc=2(a^3+b^3+c^3-3abc)+(a+b+c)(ab+bc+ac)+6abc\)
\(=2(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+ab+bc+ac+6abc\)
\(=2(a^2+b^2+c^2)-(ab+bc+ac)+6abc=2-5q+6r\)
Do đó \(A\leq 1-\frac{2(1-2q)^2}{2-5q+6r}\). Giờ chỉ cần chỉ ra \(1-\frac{2(1-2q)^2}{2-5q+6r}\leq \frac{9q}{5}\Leftrightarrow q(3-5q)+6r(9q-5)\geq 0\)
Theo AM-GM dễ thấy
\(q^2=(ab+bc+ac)^2\geq 3abc(a+b+c)=3r\)
Và \(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow q\leq \frac{1}{3}\)
\(\Rightarrow 9q-5<0\rightarrow 6r(9q-5)\geq 2q^2(9q-5)\) (đổi dấu)
\(\Rightarrow q(3-5q)+6r(9q-5)\geq q(3-5q)+2q^2(9q-5)=q(2q-1)(3q-1)\geq 0\)
BĐT trên hiển nhiên đúng vì \(q\leq \frac{1}{3}<\frac{1}{2}\Rightarrow (2q-1)(3q-1)\geq 0\)
Chứng minh hoàn tất.
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
P/s: Làm BĐT bần cùng lắm mới xài pqr, không ngờ phải xài thật :)
Bài này mà đăng vào box toán 8 là không thấy ổn rồi.
Để tối coi coi xem thế nào.
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt cosi)
=> \(\frac{\left(x+y\right)^2}{4}\ge4\) <=> \(\left(x+y\right)^2\ge16\) <=> \(x+y\ge4\)
CM bđt tương đương: \(\frac{1}{x+3}+\frac{1}{y+3}\le\frac{2}{5}\)
<=> \(\frac{5\left(x+3\right)+5\left(y+3\right)}{\left(y+3\right)\left(y+3\right)}\le2\)
<=> \(2\left(xy+3x+3y+9\right)\ge5x+5y+30\)
<=> \(2.4+6\left(x+y\right)+18-5\left(x+y\right)-30\ge0\)
<=> \(x+y-4\ge0\) (vì x + y \(\ge\)4)
<=> \(4-4\ge0\) (Luôn đúng)
=> ĐPCM