K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 4 2021
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
NV
Nguyễn Việt Lâm
Giáo viên
28 tháng 3 2021
Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)
\(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{2+3x}\)
\(\Rightarrow P=x+y=x+\frac{3-x}{2+3x}=\frac{3x^2+x+3}{2+3x}\)
\(\Leftrightarrow3x^2+\left(1-3P\right)x+3-2P=0\left(1\right)\)
Phương trình (1) có nghiệm dương \(\Leftrightarrow\hept{\begin{cases}3P-1>0\\3-2P>0\\\Delta=9P^2+18P-35\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}P>\frac{1}{3}\\P< \frac{3}{2}\\P\ge\frac{-3+2\sqrt{11}}{3}\left(h\right)P\le\frac{-3-2\sqrt{11}}{3}\end{cases}}\Leftrightarrow\frac{-3+2\sqrt{11}}{3}\le P< \frac{3}{2}\)
Dấu "=" xảy ra khi \(x=x_0=\frac{3P-1}{6}=\frac{-2+\sqrt{11}}{3};y=y_0=\frac{-1+\sqrt{11}}{3}\)
Vậy \(S=3x_0+6y_0=-4+3\sqrt{11}\)