K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{2+3x}\)

\(\Rightarrow P=x+y=x+\frac{3-x}{2+3x}=\frac{3x^2+x+3}{2+3x}\)

\(\Leftrightarrow3x^2+\left(1-3P\right)x+3-2P=0\left(1\right)\)

Phương trình (1) có nghiệm dương \(\Leftrightarrow\hept{\begin{cases}3P-1>0\\3-2P>0\\\Delta=9P^2+18P-35\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}P>\frac{1}{3}\\P< \frac{3}{2}\\P\ge\frac{-3+2\sqrt{11}}{3}\left(h\right)P\le\frac{-3-2\sqrt{11}}{3}\end{cases}}\Leftrightarrow\frac{-3+2\sqrt{11}}{3}\le P< \frac{3}{2}\)

Dấu "=" xảy ra khi \(x=x_0=\frac{3P-1}{6}=\frac{-2+\sqrt{11}}{3};y=y_0=\frac{-1+\sqrt{11}}{3}\)

Vậy \(S=3x_0+6y_0=-4+3\sqrt{11}\)

8 tháng 7 2021

Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\)  ( vì x > 0 ) 

Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\) 

Chứng minh được :  \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ... 

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)

26 tháng 1 2016

tick mik nhé Bình Trần Thịok

24 tháng 1 2016

khó ghê

24 tháng 1 2016

chẳng hiểu cái gì cả banh

NV
28 tháng 3 2021

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)