K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

BĐT cần chứng minh tương đương

\(\dfrac{3a^2+2ab+3b^2}{a+b}-2\left(a+b\right)\ge2\sqrt{2\left(a^2+b^2\right)}-2\left(a+b\right)\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{a+b}\ge\dfrac{8\left(a^2+b^2\right)-4\left(a+b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{a+b}\ge\dfrac{2\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\right)\ge0\)

ta phải chứng minh

\(\dfrac{1}{a+b}-\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\ge0\)

\(\Leftrightarrow\dfrac{1}{a+b}\ge\dfrac{2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

\(\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}+a+b\ge2\left(a+b\right)\Leftrightarrow\sqrt{2\left(a^2+b^2\right)}\ge a+b\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

=> đpcm

15 tháng 6 2020

2. Bạn kiểm tra lại đề: VP = 1/2

Ta có: 

  \(\sqrt{a\left(3a+b\right)}=\frac{1}{4}.2.\sqrt{4a\left(3a+b\right)}\le\frac{1}{4}\left(4a+3a+b\right)=\frac{1}{4}\left(7a+b\right)\)

\(\sqrt{b\left(3b+a\right)}=\frac{1}{4}.2.\sqrt{4b\left(3b+a\right)}\le\frac{1}{4}\left(4b+3b+a\right)=\frac{1}{4}\left(7b+a\right)\)

=> \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{\frac{1}{4}\left(7a+b\right)+\frac{1}{4}\left(7b+a\right)}=\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Vậy: \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\) với a, b dương

4 tháng 10 2017

thangbnsh@gmail.com helpme

4 tháng 10 2017

thangbnsh@gmail.comacelegona

12 tháng 11 2017

BĐT cần chứng minh tương đương :

\(\sqrt{\dfrac{a^2+b^2}{2}}-\sqrt{ab}\ge\dfrac{a+b}{2}-\dfrac{2ab}{a+b}\)

\(\Leftrightarrow\dfrac{\dfrac{a^2+b^2}{2}-ab}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a+b\right)^2-4ab}{2\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\right)\ge0\)

ta phải chứng minh;

\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\)\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{1}{2\left(a+b\right)}\)

\(\Leftrightarrow a+b\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\)\(\Leftrightarrow2a+2b-\sqrt{2\left(a^2+b^2\right)}-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(a+b-\sqrt{2\left(a^2+b^2\right)}\right)+\left(a+b-2\sqrt{ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2-2\left(a^2+b^2\right)}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a+b\right)^2-4ab}{a+b+2\sqrt{ab}}\ge0\)

\(\Leftrightarrow\dfrac{-\left(a-b\right)^2}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a-b\right)^2}{a+b+2\sqrt{ab}}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\right)\ge0\)

ta phải chứng minh

\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\ge0\)

\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}\ge\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\)

\(\Leftrightarrow a+b+2\sqrt{ab}\le a+b+\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow2\sqrt{ab}\le\sqrt{2\left(a^2+b^2\right)}\Leftrightarrow\left(a-b\right)^2\ge0\)

13 tháng 6 2021

Áp dụng BĐt bunhiakovsky ta có:

`(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=(a+b)(3a+b+3b+a)`

`<=>(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=4(a+b)^2`

`<=>\sqrt{a(3a+b)}+\sqrt{b(3b+a)}<=2(a+b)`

`=>(a+b)/(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})>=1/2`

Dấu "=" `<=>a=b`

4 tháng 10 2017

đừng tag tui, tui k làm đâu

4 tháng 10 2017

bạn biết làm ko chỉ mình với

23 tháng 2 2022

Đặt \(x=a^3;y=b^3;z=c^3\), khi đó \(xyz=1\). Bất đẳng thức cần chứng minh trở thành:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)

Ta viết lại bất đẳng thức như sau:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

Bình phương 2 vế ta được:

\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\left(x+y\right)^2\left(x+\frac{1}{y}\right)^2\ge x+1^4\)hay ta được bất đẳng thức:

\(\left(x+y\right)^2\left(x+xz\right)^2\ge\left(x+1\right)^4\Leftrightarrow x^2\left(x+y\right)^2\left(1+z\right)^2\ge\left(x+1\right)^4\)

Tương tự ta được các bất đẳng thức:

\(y^2\left(y+z\right)^2\left(1+x\right)^2\ge\left(y+1\right)^4;z^2\left(z+x\right)^2\left(1+y\right)^2\ge\left(z+1\right)^4\)

Nhân theo vế các bất đẳng thức trên, ta được:

\(x^2y^2z^2\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)

\(\ge\left(x+1\right)^4\left(y+1\right)^4\left(z+1\right)^4\)

Hay:

\(\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\ge\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)

Mặt khác, ta lại có:

\(\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\ge\left(1+x\right)\left(1+y\right)\left(1+z\right)\cdot8\sqrt{xyz}\)

\(=8\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

Do đó ta được bất đẳng thức:

\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

Bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c\)

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2} $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right) \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.