Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này được liệt vào câu hỏi hay nhưng mk cũng chưa nghĩ ra
ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))
vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)
dấu "=" xảy ra khi a=b
chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)
cộng các bất đẳng thức (1) (2) và (3) theo vế ta được
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)
* Ta có:
\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
* Tương tự ta có:
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\); \(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)
(Dấu "=" xảy ra khi a = b = c = 673)
Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)
Từ giả thiết \(1\le a\le2\) => ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)
Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)
Vì vậy ta có P:
\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
Ch0 a>0 và n là 1 số tự nhiên
Chứng minh rằng an+1an−2⩾n2(a+1a−2)
Lời giải:
Bất đẳng thức tương đương với (an−1+an−2+...+a+1)≥n2an−1 (hiển nhiên theo AM-GM)
Cách khác:
Do tính đối xứng giữa a và 1a nên ta có thể giả sử a ≥ 1. đặt √a =x ≥ 1.bdt ⇔ x2n+1x2n−2≥n2(x2+1x2−2)⇔(xn−1xn)2≥n2(x−1x)2⇔x^{n}-\frac{1}{x^{n}}\geq n(x-\frac{1}{x})$①.
Với x=1 thì ① đúng
Với x>1 thì ① ⇔xn−1+xn−3...+1xn−3+1xn−1≥n (đúng vì theo bđt AM-GM).
Dấu bằng xảy ra khi x=1 ⇔a=1
đáp án là 24