Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét z=0 không thỏa mãn giả thiết bài toán.
Đặt z = R , R > 0
Ta có:
2 + i z = z w + 1 - i ⇔ 2 R - 1 + R + 1 i = z w
⇒ R w = 5 R 2 - 2 R + 2 = 5 R 2 - 2 R + 2 R 2 = 5 - 2 R + 2 R 2 = 2 1 R - 1 2 2 + 9 2 ≥ 3 2 , ∀ R > 0
Suy ra w ≤ 2 3 , ∀ R > 0
Ta có
T = w + 1 - i ≤ 1 - i ≤ 2 3 + 2 = 4 2 3
Đẳng thức xảy ra khi z = 2 w = k 1 - i , k > 0 2 + i z = z w + 1 - i
⇔ z = 2 w = 1 3 ( 1 - i )
Vậy m a x T = 4 2 3
Chọn đáp án A.
Đáp án C
Đặt z = x + y i x , y ∈ ℝ ,
khi đó
z − 3 − 2 i ≤ 1 ⇔ x − 3 2 + y − 2 2 ≤ 1
Suy ra tập hợp điểm biểu diễn số phức z là miền trong đường tròn
x − 3 2 + y − 2 2 = 1.
Đặt w = a + b i a , b ∈ ℝ , khi đó w + 1 + 2 i ≤ w − 2 − i ⇔ a + b ≤ 0
Suy ra tập hợp điểm biểu diễn số phức w là miền x + y ≤ 0 , bờ là đường thẳng x + y = 0 .
Gọi C : x − 3 2 + y − 2 2 = 1 có tâm I 3 ; 2 , bán kính R = 1 và Δ : x + y = 0 .
Do đó
P = z − w = M N ⇒ M N min = d I ; Δ − R = 5 2 − 1 = 5 2 − 2 2 .